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(where o = GR + iOI, qR #0 is a complex scalar, x and k are n-
dimensional real and complex vectors respectively). For each Js g%L
can be expressed in terms of u and a quantity T which by analogyJ
to the one-dimension case they call the scattering transform of u.
An explicit condition characterizigg admissible T is obtained from
3w _ 2%u )
akiakj Skjaki
chosen limit then leads to a family of solutions u of the time-
dependent Schrodinger equation (0 = i) and a corresponding T. Some
of the features of the scattering transform T which make it a very
attractive object of study are: a) admissible T can be explicitly
characterized; b) given the physical scattering amplitude A, T can
be found by solving a simple linear integral equation; c) the poten-
tial can be reconstructed from T purely by quadratures. When the
potential v is independent of time, the solution u one arrives at
by the route indicated above, coincides with the one first introduced
by Faddeev; the characterization of A via that of T turns out to
be essentially equivalent to his. For this problem, some of the new
features brought about by the Nachman-Ablowitz appreach are: a) a
systematic method for deriving as well as understanding Faddeev's
characterization; b) the characterization condition is expressed as
an integral equation, possibly easier to verify than Faddeev's analy-
ticity requirement (this integral equation also helps explain why
there are no simple analogues of the KdV equation associated with
higher-dimensional SchrSdinger problems); c¢) a much simpler recon-
struction procedure: once T 1is computed from ("on-shell" A) by
solving the linear integral equation (known to Faddeev and Newton)

the compatibility requirements A certain carefully
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v can be calculated from T purely by quadratures; d) the realiza-
tion that the mathematical scattering transform T can be explicitly
- characterized (without any additional miraculous requirements). The
latter fact may turn out to be essential if one is to reasonably in-
vert noisy data which may not satisfy the characterization condition.

4. A Mathematical Theory for Reconstructing Discontinuities in Linearized Inverse Problems of
Wave Propagation, G. Beylkin*

We develop an approach based upon the theory of Fourier Integral
Operators for reconstructing discontinuities of parameters describing
a physical medium in linearized inverse problems. Solutions of
linearized inverse scattering problems form a mathematical basis for
interpretation of seismic reflection data, ultrasound reflectivity
imaging in medical applications, crack and void detection and various
other methods of non-destructive evalution.

*Schlumberger-Doll Research, Ridgefield, CT 06877
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To illustrate our approach, we consider a medium where wave propa-
gation is described by the Helmholtz equation. Suppose the index of
refraction in some region X 1is of the form n2(x) = ng(x) + £(x),

where n.(x) —- the background index of refraction--is known. Then

the prob?em is to characterize the function £f(x) using observations
of the (singly) scattered field on the boundary 93X of the region X.
The incident field is generated by a point source at the point n loca-
ted outside the region of interest. Let the region X be three-
dimensional, however, the specific dimension of X 1is not essential in
our approach, and -enters only as a parameter. We treat the case of a-
variable background index of refraction and arbitrary configuration of
sources and receivers.

The linearized inverse scattering problem is formulated in terms of
an integral equation of the first kind with an oscillatory kernel re-
lating the singly scattered field to the perturbation £(x)

v GE) = k[ G0k, E,RE(®)C(k,n,0)dx )

where & and 1 denote locations of receiver and source, respectively.
The Green's function G 1is the solution of the equation

(Vi + kzné)G(k,g,x) = §(x - &)

A system of equations of similar structure can be obtained for fluids
with variable densities and for elastic solids.

Many practical problems of non-destructive evaluation can be solved
provided we can accurately reconstruct discontinuities~~location and
jump--of parameters of a physical medium. The method for solving (1)
that we develop accomplishes this.

Integral equation (1) is connected with the causal Generalized
Radon Transform (GRT) if we use geometric optics approximation for
both Green's functions in (1),

G(k,..-.,x) = A(...,x)eik‘b(“"") s (2)

where ¢(...,x) is the phase which satisfies the eikonal equation
and A(...,x) is the amplitude which satisfies the transport equa-

tion. ... here stands for either £ or 1.

If we define a causal Generalized Radon Transform (GRT) as

®RE) (6,8,m) = [ £®a(x,E,m8(t - ¢(x,E,n))dx, for t > 0,( :
3
(RE) (£,E,n) = O, for t <0,

where
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b(x,E,n) = ¢(&,x) + ¢(n,x) ,

[

and

a(x,&,n) = A(E,x)A(M,x) ,

then within the geometric optics approximation vsc(k,g,n) =

—kZ(Rf) (k,E,n), where ~ denotes the one-dimensional Fourier trans-
form of (3) with respect to variable ¢t.

Now the problem of solving (l) can be cast as an inversion problem
for GRT. The inversion of the GRT requires the introduction of Fourier
Integral Operators (FIO). A special role is played by a FIO of the
form F = R*KR. Here, R denotes the GRT, R* is an operator dual to
R, and K is a one-simensional convolution operator. R* is also
known as the Generalized Backprojection Operator (GBO). By properly
choosing the convolution operator K and the weight function of the
GBO the problem of inverting the GRT is reduced to that of solving a
Fredholm integral equation.

Exploiting the fact that F is "almost" the identity operator we
rigorously establish a class of migration algorithms as approximate
solutions of the linearized inverse scattering problem. We prove
that

F=I+T, +T, + ...,

1 2
where Tl’TZ"" belong to increasingly smooth classes of pseudo-
differential operators, Tj € L"J(X), for j =1,2,... and

F-1¢6 LHI(X). An operator from the class L_l(X) increases by one
the number of derivatives of a function to which it is applied. The
approximation amounts to using only the first term of an asymptotic
expansion for the solution of the integral equation (1), which in
terms of GRT can be written as

R*KR <~ I.

Due to the nature of the asymptotics we give a precise meaning to what
is reconstructed by this first order inversion for arbitrary configu-
rations of sources and receivers, including the case of limited view
angles. In particular, we show that the location of discontinuities
and the jump at such discontinuities of the unknown function £ are
recovered.

We also note that since we reconstruct only discontinuities of the
function £, the kernel in (1) can be changed without affecting the
first order inversion as long as high frequency asymptotics of it re-
mains the same. Therefore, the use of geometric optics approximation
for Green's function (2) does not affect the answer obtained.
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Our method yields an algorithm for recovering these discontinuities
for variable background velocity and an arbitrary configuration of
sources and receivers. The derivation is valid as long as certain
physically meaningful conditions on the global structure of rays are
satisfied.

Algorithms obtained in this manner have already been used for com-
putations and proved to be robust. They have a simple physical inter-
pretation and for a constant background velocity and specific source-
receiver geometries, are directly related to what are known as migra-
tion algorithms in seismic exploratiom.

Our method also allow partial reconstructions for a limited aperture |
and, in this case, limits on spatial resolution are explicitly ;
obtained.

5. A Marchenko-Faddeev Method for Inverse Scattering in R’, Roger Newton*

Roger Newton reported on two new inverse scattering methods for the
Schrodinger equation. These methods are simple and elegant, but both
require the unjustified assumption that a key integral equation, namely
Faddeev's version of the Lippmann-Schwinger equation, is uniquely
solvable at all points on the real axis. In other words, these methods
require that there be no exceptional points.

The first method uses Faddeev's Green's function to obtain a
Marchenko~-like method. The Faddeev Green's function GY satisfies

(A + kz)GY = § and depends on a direction Y as well as on other
variables. The function GY also has certain analyticity properties.
This Green's function is used to construct solutions ¢:(k,x) and
¢;(k,x) of the Schrsdinger equation analogous to the usual incoming

and outgoing scattering solutions. A quantity h which is analogous
to the scattering amplitude can be extracted from the large-x asympto-

tics of ¢: and ¢;. This "scattering amplitude" h is then used to

construct an integral operator ), which satisfies
- + +
- = Q .
by = 0o, = 240

This relation, together with analyticity and asymptotic properties of

+
¢, forms a generalized Riemann-Hilbert problem. It can be Fourier

transformed to yield a generalized Marchenko equation. The potential

*Physics, Indiana University, Bloomington, Indiana 47405. An expanded
version of this paper entitled "A Faddeev-Marchenko Method for
Inverse Scattering in Three Dimensions," has been published in Inverse
Problems, 1 (1985), pp. 127-132.




