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MATHEMATICAL THEORY FOR SEISMIC
MIGRATION AND SPATIAL RESOLUTION

G. BEYLKIN

INTRODUCTION

Migration methods in seismics are computationally intensive and powerful tools for
interpretation of seismic experiments. A partial list of papers on migration methods in
the geophysical literature include those by Hagedoorn (1954), Lindsey and Herman
(1970), Rockwell (1971), Claerbout (1971), Schneider (1971, 1978), Claerbout and
Doherty (1972), French (1974, 1975), Gardner et al. (1974), Cohen and Bleistein (1977,
1979), Stolt (1978), Berkhout (1980, 1984), Clayton and Stolt (1981), Johnson and
French (1982), Devaney (1984), Gazdag and Squazzero (1984), Tarantola (1984),
Bleistein and Gray (1985), Stolt and Weglein (1985) and many more. This list is not
intended to be complete and is compiled to show a continuing interest in this subject.
Some of the ideas relevant to migration procedures can even be traced back to the
nineteen-twenties (see Gardner 1985). Though mathematically involved, migration
methods were primarily based on semi-heuristic arguments. More precisely, answers
for simple models were routinely extended beyond their limits of applicability by
heuristic arguments, either explicitly - in the form of imaging principles, or implicitly —
through the choice of weights in Kirchhoff-type migration. This heuristic approach was
especially evident for migration with variable background velocity and complex
source-receiver configurations.

Recently, the theory of pseudodifferential and Fourier integral operators has been
found to provide a mathematically rigorous justification for migration methods. This
theory allows the analysis of the most general case of both lateral and vertical
variations in the background velocity (and/or other parameters) and arbitrary
configurations of sources and receivers. The important role in this approach belongs to
the generalized Radon transform (GRT) and its inversion procedure (Gel'fand et al.
1969; Guillemin and Sternberg 1977; Quinto 1980; Beylkin 1982, 1984). Miller (1983)
recognized that seismic imaging could be cast as the problem of inverting a GRT.
Mathematical theory describing the formal derivation of the inversion procedure and
the nature of the reconstructed image is described in Beylkin (1985a, 1985b).
Geophysical applications as well as the important heuristics of the method are treated
in Miller et al. (1984, 1987). An example of migration of the field data set can be found in
Miller and Dupal (1987), and Dupal and Miller (1985). Though most of the work seems
to concentrate around the GRT, the more general nature of the results is apparent
(Beylkin 1985b; Beylkin er al. 1985; Chang et al. 1987): it became clear that the
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derivation of migration algorithms to solve the linearized inverse scattering problem is
best understood within the theory of pseudodifferential and Fourier integral operators.

The sequence for the derivation of a migration algorithm within this theory can be
briefly described as follows. For a given background model the inverse probiem is
linearized using the single scattering (Born) approximation. This is the standard
perturbation technique which yields the scattered field as a volume integral of the
perturbation. This integral has an oscillatory kernel. Given the scattered field a Fourier
integral operator (which can be viewed as being applied to the perturbation of the
model parameters) can be constructed. Then the Fourier integral operator is inverted
modulo a smooth error. This inversion procedure modulo a smooth error is, in fact,a -
migration algorithm. This connection can be explicitly established by direct compari-
son with known migration algorithms. For example, considering the generalized
Radon transform one can relate inversion of the Fourier integral operator to the
Kirchhoff-type migration. The smooth error term can be small in a number of
important cases. In all cases the locations of the discontinuities and the sizes of the
jumps of the parameters are recovered.

This approach also explains why heuristic arguments worked so well in seismics.
Since such arguments led to correct phase predictions (correct travel times), the
locations of discontinuities (in the velocity profile, for example) were recovered
correctly. Meanwhile, inaccuracies in measurements of amplitudes and preprocessing
made amplitude information less useful for recovery of the exact jumps at these
discontinuities. As a result, inconsistencies in heuristic arguments with respect to the
treatment of the amplitude information were relatively unimportant in practice.
However, given accurate amplitudes it appears possible to recover the sizes of the
jumps at discontinuities correctly. This, in turn, gives an objective criterion for
comparing different implementations of migration algorithms. In fact, this approach
provides a unified point of view on Kirchhoff-type migration and ‘full wave equation’
migration (Beylkin et al. 1985; Levy and Esmersoy 1987).

A major advantage gained by embedding the analysis into the theory of
pseudodifferential operators—apart from mathematical consistency —is the explicit
description of the spatial resolution of migration algorithms and its dependence on
limited apertures of seismic experiments and limited frequency content of seismic
sources (Beylkin et al. 1985). Analysis of the spatial Fourier spectrum of the object
yields a local version of relationships described by Wolf (1969) in the context of
holographic imaging. We note that the relationship of the spatial Fourier spectrum of
the object to the data is also the basis of diffraction tomography (Devaney 1982, 1984;
Devaney and Beylkin 1984) and is used implicitly in migration by Fourier transform
(Stolt 1978). The conclusion (Beylkin et al. 1985) is that the theoretical limit of spatial
resolution does not depend on the type of migration algorithm used in reconstruction,
but does depend on the background model, on the configuration of sources and
receivers, and on the frequency content of the source.

This presentation is intended to demonstrate in greater detail connections of the
theory of pseudodifferential and Fourier integral operators with the derivation of
migration procedures and estimation of spatial resolution of these algorithms.
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17.1 PSEUDODIFFERENTIAL AND FOURIER INTEGRAL OPERATORS

The title of this section might discourage a non-mathematician since these notions are
not yet a part of the standard curriculum in applied mathematics. However, these
mathematical objects are well known under different names to electrical engineers and
to those who process images. In these fields, pseudodifferential operators are known as
space- or time-varying filters. A specific example of a two-dimensional pseudodifferen-
tia] operator would be a spatially varying edge detection operator in image processing.

It is natural to ask: What does the mathematical theory of pseudodifferential and
Fourier integral operators contribute to applications? I will try to answer this question
with respect to migration (or inversion) algorithms. I will be emphasizing two points
which are standard in this theory, namely, the classification of pseudodifferential
operators and the machinery of formal manipulation with these operators. The
purpose of this section is to give a very brief introduction to the theory of
pseudodifferential operators in preparation for treatment of migration algorithms. As
we will see in what follows, routine application of very basic ideas developed in this
theory will yield migration schemes suitable for arbitrary source-receiver geometries
and arbitrary background (or reference) velocities, and also will produce very simple
and practical estimates of spatial resolution. And these considerations have sufficiently
general direct practical implications.

Classes of Pseudodifferential Operators

We start with the definition of the simplest (but quite sufficient for our purposes) classes
of pseudodifferential operators. Initially, we will consider these operators in spaces of
arbitrary dimension d.

Consider the operator P,

]

(Pf)(x)= anF Ld p(x, k) [ (k)e™ > dk, (17.1)

where f denotes the Fourier transform of the function f
= J S~ dy. (17.2)
X

The function p(x, k) is called the symbol of the pseudodifferential operator P.
Example. Consider a partial differential operator with variable coefficients

P= 3 aq,x)os, (17.3)
|laj<m
where o is a multiindex, a=(ay, . . ., o), lel=a, +a,+ ... +ay, 03=030% ... 9%,
and ax.zl_ i The symbol of this operator is
7 0x;
px, k)= Y a,(x)k. (17.9)

fal<m
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A more symmetric forrp of the symbol with respect to variables x and y can be obtained
if the expression for f in (17.2) is substituted in (17.1) and the symbol is allowed to
depend on variable y,

1 e
(Bf)(x)= (*zn—)de L p(x, y, k) f(y)e* & dydk. (17.5)

Definition. Let X be an open subset of R? and m be a real number, Let S™(X x X)be the
class of symbols consisting of infinitely ~differentiable functions p(x, ¥, k),
p(x, y, k)e C®(X x X x R"), such that to every compact Q< X and to every three
multiindices o, §, y there is a constant Cola, B, v), such that

105028} p(x, y, k)| < Cola, B, ¥)(1 + [k, (17.6)

for x,yeQ.

The pseudodifferential operator P is said to belong to the class L™(X) if its symbol
p(x, y, k) belongs to S™(X x X).

This definition of classes L™(X) grew out from an observation that the operator
of differentiation 0% in the Fourier domain (the operator of multiplication by
k*=ki'k3* ... kj%) is a homogeneous function of degree fa|=a,+o,+ - - +a,
Derivatives of homogeneous functions are also homogeneous functions with degree
which is less than the original degree by the number of derivatives. For example

O k= kg .. kT e, (7.7

is a homogeneous function of degree || — 1. The definition of classes of symbols depicts
this property with respect to differentiation in a weak form through the inequality
(17.6), which is useful for estimates. This definition says, roughly, that symbols from the
class S™ define operators that are somewhat similar to the operator that takes m
derivatives. (We note, however, that m may be any real number). Alternatively, symbols
from the class S ™™ define operators that are somewhat similar to operators that take m
integrals.

In more precise terms here are some of the principal properties describing P as an
operator. If p(x, y, k)e S™(X x X) then P is a continuous operator

P:CO(X) - C(X), ' (17.8)

where C(X) denotes the class of infinitely differentiable functions with a compact
support in X. The operator P can be extended to a continuous map

P:&'(X)> 9'(X), (17.9)

where 9'(X) is the space of distributions on X (the dual of C$(X)) and &'(X) is the
space of distributions with compact support (the dual of C *(X)).

Theorem. Let P be a pseudodifferential operator in X of class L™(X). Given any real
number s the operator P can be extended as a continuous map

P H oo (X) = H (X)), (17.10)

where H,, (X) and H;_™(X) are the Sobolev spaces of distributions.
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The Sobolev space H*(RY) is the space of distribution in R* whose Fourier
transform is a square-integrable function in R? with the measure (I +1k*ydk. Itis a
Hilbert space with the inner product

(u, v)= &;L a(k)D(k)(1 + |k |2y dk, (17.11)

where the bar denotes complex conjugation.

The subspace H},,,,(Q) of H*(R) consists of the distributions with the support in
the compact set 0; H comp(X) is the union of the spaces H comp(Q), Where Q spans the
collection of all compact subsets of X. Finally, Hy,.(X) is a space of distributions in X ,
such that if properly localized (by infinitely differentiable cutoff functions to compact
subsets exhausting X) these distributions belong to H®. The index s can be interpreted
as a ‘number of derivatives’ and the theorem describes how this number is affected by a
pseudodifferential operator. Indeed, following this interpretation if a function original-
ly has s derivatives then after application of an operator from the class L™ (which acts
like taking m derivatives) the function has s—m derivatives. For detailed descriptions
see the references on pseudodifferential operators (e.g. Hormander 1965; Kohn and
Nirenberg 1965; Treves 1980; Taylor 1981).

Parametrix and asymptotic expansions.

One of the most important tools in the theory of pseudodifferential operators is the
parametrix. The parametrix is a solution of a partial differential or an integral equation
which is defined exactly like the Green’s function except that an arbitrary smooth
function may have been added to the source terms of the equation. The nice thing about
a parametrix is that, unlike the Green’s function, it can be constructed explicitly even
for equations with variable coefficients. (The new element here is the notion of
parametrix itself because, as it turns out, the construction of an asymptotic Green’s
function by the ray method produces a parametrix).
More accurate description of the parametrix requires the following:

Definition. The operator P is said to be regularizing if it maps
P:&'(X)-C=(X). (17.12)

Let L™ °(X) be the intersection of all L™(X), where m is real. One can prove that
every operator from the class L~ “(X) is regularizing and every regularizing operator
can be represented as an operator from the class L™*(X). This means that a
regularizing operator transforms functions with singularities into infinitely smooth
functions. If we construct the inverse of an operator modulo regularizing operators
then we have a parametrix. It also can be formulated as follows: if we allow smooth
errors as opposed to small errors, then it is sufficient to construct a parametrix instead
of the Green’s function.

Closely related to the notion of the parametrix is the idea of asymptotic expansion
of pseudodifferential operators with respect to smoothness. The classification of
pseudodifferential operators gives a scale of smoothness for these operators. Given an
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operator Pe L™ an asymptotic expansion of this operator can be constructed:

P=T,+T,- . +T, o+ ..., (17.13)
where

T;e L/(X), (17.14)
for j=m,m—1,m—=2,..., and

P-T,-T,.,— - —T)el/ " 1(X), (17.15)
for j=m, m—1, m—2,.... Such an expansion is modulo regularizing operaiors.

Fourier integral operators

An operator of the form

(FN)e0= ’—f J SO, y, k&= b dyd, (17.16)
2n)* Jra Jx
where A € S™(X x X} is called the Fourier integral operator provided this integral can
be given meaning through regularization. With appropriate restrictions on the phase
function @ (see references on Fourier integral operators, e.g. Hormander 1971; Treves
1980) the integral in (17.6) can be regularized. If ®(x, y, k)=(x—y)-k, then F is a
pseudodifferential operator.

17.2 LINEARIZED INVERSE SCATTERING PROBLEM

We assume for the sake of simplicity that the propagation of waves is governed by the
Helmbholtz equation, so that the medium is described by just one function — the index of
refraction (reciprocal of the velocity).

We denote the region of interest in the medium by X and its boundary by X. Let
the region X be three-dimensional, though the specific dimension of X is not essential.
For definiteness, we consider the case when the position of the source is fixed. We
assume the experiment has a limited aperture and denote the part of the boundary
where receivers are located by 0X,.

We assume that the index of refraction in the region X is of the form

n?(x)=n3(x)+ f(x), (17.17)

where the background index of refraction n, is known and the perturbation f is non-
zero only inside the region X.

We assume that the function u(s, r, t) - the scattered field - is given as a function of
time ¢, source position s, and receiver position r. For fixed s and r the function u(s, r, t) is
a single seismic trace. We assume that the scattered field is causal u(s, r, t) =0, for t <0,
and, therefore, real and imaginary parts of the scattered field in the frequency domain

+o
s, r, o) =I u(s, r, t)e dt (17.18)

— %

satisfy dispersion relations.
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Given the background index of refraction n, (background model), the linearized
inverse scattering problem is that of characterization of the perturbation f using
observations of the scattered field u on the boundary 0X of the region X.

If the propagation is governed by the Helmholtz equation, then the scattered field
i(s, r, w) satisfies within the single scattering (or distorted wave Born) approximation
the following integral equation

i(s, r, w)y= — w? J G(y, r, ) f(y)G(s, y, w)dy, (17.19)
X

where G 1s the Green’s function of the background model.
The Green’s function G is the solution of the equation

(VZ4+ 0?nd())G(y, r, w)=8(y—r1), (17.20)

and, in principle, can be computed given the background model. The incident field
G(s, y, w) is due to the point source located at the point s.

Remark 1. Tmplicit in (17.20) is the assumption that the boundary X is not
physical (in our case it means that the index of refraction does not have a jump at &X). If
the boundary is a physical boundary then the definition of the Green’s function changes
and includes boundary conditions. In what follows it only affects the computation of
amplitudes.

Remark 2. Equation (17.19) is obtained via standard perturbation analysis. The
range of validity of this approximation was discussed by a number of authors and is not
treated here.

We view (17.19) as an equation for the unknown function f. This is an integral
equation with an oscillatory kernel. We proceed to solve this equation by constructing
a Fourier integral operator (which can be shown to be a pseudodifferential operator)
and to compute the first term of its asymptotics.

We start by noting that the simplest integral equation with an oscillatory kernel is
the Fourier transform '

fiky= J f(y)e~#+dy. (17.21)
X

The solution of this equation is obtained by applying the adjoint operator (the inverse
Fourier transform),

1 a .
f(x):an—)g f fye =dk. (17.22)
R3

Substituting (17.21) in (17.22) we obtain a pseudodifferential operator, which is the
identity operator in this case.

By analogy with (17.22), considering (17.19) as the integral equation with the
oscillatory kernel we apply (what can be called) the normalized adjoint operator to the
scattered field. Denoting the result by f,(x) we write -

1 Gix,r,w) G(s,x,w)
=——073 i 7.23
el = e [ i e Motk (1729
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where the function h(s, r, x) is yet to be described. Here Re denotes the real part of the
expression and is introduced to limit the integration with respect to wto [0, c0]; dris
the surface measure on 0X,.

By analogy with (17.21) and (17.22) we substitute the expression for the scattered
field (17.19) in (17.23) and obtain

Jes(X)= f f J (y, 1, 0)G(s, y, w)

Gix,r,w) G(s, x, w) )
G 7. ) 1665, x, o) TS T X) () dy dr w?do. (17.24)

Operator (17.24) is a Fourier integral operator applied to the function f. It is possible to
prove (under reasonable assumptions) that (for a wide class of functions h)itis, in fact, a
pseudodifferential operator of the class L°(X). Given this, we proceed to construct the
first term of the asymptotic expansion of this operator with respect to smoothness. By
choosing h properly, we show that the first term in this asymptotic series is the identity
operator. This, in turn, establishes the relation between f(x) and f,(x).

Step 1. At this step we replace the Green’s functions by the leading order term of
their high frequency asymptotics. The justification is as follows. If the domain of
integration in (17.24) with respect to w is restricted to a finite interval then the result
always has derivatives of all orders. Since the asymptotics is modulo infinitely
differentiable functions, only the contribution from high frequencies affects it.
Therefore, we can replace the Green’s functions in (17.24) by their high frequency
asymptotics. We will keep only the leading order term since only this term contributes
to the most singular term in the asymptotics with respect to smoothness.

Thus, we replace the Green’s functions in (17.24) by

G(s, x, w) = A(s, x)el@?t*}, (17.25a)

G(x, r, w)= A(x, r)el?™ ", (17.25b)
where the phase functions ¢(s, x) and ¢(x, r) satisfy the eikonal equation

(V<9)*=ng, (17.26)

and amplitudes A(s, x) and A(x, r) are solutions of the transport equation (with proper

initial conditions)

AVIp+2V, AV $=0, (17.27)

along the rays connecting the source s with the point x and the point x with the receiver
r, respectively.
We arrive at

Jest¥)

A, NAGY) ioois, 7. x0- 065, 7. ) 2
io(®(s, r, x ST, d d
2 )3 J ,[ _[ A(x, r)A(s, x)e h(s, r, x) f(y)dydr w*dw
(17.28)
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where
O(s, 7, x)= (s, x) + P(x, 1), (17.29)
is the total travel time between the source, the point x, and the receiver.

Step 2. At this step we localize the computation to the neighbourhood of the point of
reconstruction x. If e<|x—y|, where ¢ is any positive number, then the result of
integration in (17.28) (over the part of the domain X described by this condition) is
infinitely differentiable and, therefore, will not affect the asymptotics. If |[x— y| <¢ we
replace the phase of the exponent by the first term of the Taylor series '

D(s, r, x)— (s, r, y)= V. O(s,r, x) (x— ), (17.30)

and ‘freeze’ the value of the amplitude terms at the point x. By doing this we account for

the most singular term in the asymptotic expansion with respect to smoothness. We
obtain from (17.13)

1 @ )
fcs,(x)=(27)3 Re f f f el OVx P r =N s r x) f(y)dy dr w*dw. (17.31)
o Jox, Jx

Step 3. At this step we set w?h(s, r, x) to be the Jacobian of the change of variables
from we[0, oo} and reédX, to ke R®. We have

k=wV,d(s, r, x), (17.32)
so that
dk = h{s, r, x)drow*dw. (17.33)

The function h(s, r, x) can be computed by ray tracing using the identity (Beylkin
1985a)

h(s, r, x)dr=n3(1 +cos ¥ (s, r, x))dQ, (17.34)
where

Vi ¢(s, %) V. d(x, 1)

n§(x)

cosy(s, r, x)= . (17.35)
Y(s, r, x) is the angle between the two rays traced from the source and from the receiver
to the point x; dQ is the standard solid angle measure on the unit sphere. Relation
(17.34) describes the rate of change at the point x of the direction of the ray connecting
point x with the receiver with respect to the receiver-position on the boundary dX. The
function h(s, r, x) should be non-zero at the point of reconstruction x in order for (1 7.34)
to be valid. Physically, it corresponds to the regularity of the wave field in the
background medium (see Beylkin 1985a).
Thus, we obtain from (17.31)

1 -
Jea(X)= o Re J;) L e* <N f(y)dydk (17.36)

where D, < R? is the region in the Fourier space. It is natural to call D, the domain of
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coverage in the space of spatial frequencies. This domain is determined by the map
(17.32) of the total domain of integration (which we define as [signal frequency band]
x 0X,)into the space of spatial frequencies. This region controls the spatial resolution
of migration algorithms.

If D, =R, then we have shown by obtaining (17.36) that

Jes ()= f(x)+(Tf )(x), (17.37)

where Te L™ '(X). It means that if the perturbation f has jump discontinuities then we
reconstruct both the location and the size of the jump at these discontinuities.

17.3 MIGRATION ALGORITHMS

The considerations of the previous section lead to formula (17.23) as the algorithm for
reconstructing the location and size of the jump discontinuities of the index of
refraction. To see that this formula is, in fact, related to migration procedures we will
rewrite it so that it resembles Kirchhoff migration.

First, let us point out the relation between the singly scattered field and the
generalized Radon transform.

Relation to the generalized Radon Transform.

Consider the transform defined by

(Rf)(s, 7, 1) = f F(X)A(s, )A(x, )6t — d(s, X)— d(x, 1)) dx, t>0, (17.38)
X

(Rf)s,r,1)=0 <0.

This is the causal generalized Radon transform. Substituting (17.25a) and (17.25b) in
(17.19) and transforming the result into the time domain yields the relation between the
main term of the high frequency asymptotics of the singly scattered field and the causal
generalized Radon transform,

u(s, r, 1)=0}(Rf)(s, r, t). ' (17.39)

Inversion of the causal generalized Radon transform modulo smooth errors yields
Kirchhoff-type migration algorithms. The inversion in the three-dimensional space
amounts to the generalized backprojection. We recall, that the result of the
reconstruction via (17.22) is accurate up to a smooth error and accounts for the most
singular term. Therefore, given (17.39) the inversion modulo smooth errors of the,
generalized Radon transform will yield the same most singular term. Hence, we can
obtain the generalized backprojection (or Kirchhoff-type migration) from the comput-
ations of the previous section.

Kirchhoff-type migration

Substituting (17.25a) and (17.25b) in (17.23) and rewriting the result in the time domain
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we have
1 h(s, r, x)
est(8)= — — T ——uls,rt dr, 17.40
f l( ) 871’2 eX, A(S’ x)A(x, r) ( ) 1=¢(s, x)+ ¢(x, r) ( )

which is the Kirchhoff-type migration for the general non-uniform background and an
arbitrary configuration of receiver positions.
The following interpretation can be given to this formula

For a given point of reconstruction X, We want to check if there is a reflector at that
point. To accomplish this, we integrate the scattered field u(s, r, t) along the time-distance
curve t = @(s, X)+ ¢(x, rydictated b Y the background model. | [fthere were areflector at the
point x then along this curve the scattered field is affected to the greatest extent. The
weight is chosen so that we obtain the jump of the function J at the point x as a result of
such an integration.

This is the heuristics of the Kirchhoff-type migration which is extended to an
arbitrary background model and source-receiver configuration. The image created by
this formula is the image of the perturbation of a specific parameter rather than the
image of the field. Moreover, the estimate of the spatial resolution of the formula is
available through the analysis of the map (17.32).

Spatial resolution

Formula (17.23) has two integrals and depending on the order in which they are taken it
carries different interpretation. This was discussed in Beylkin et al. (1985). The
algorithm can be interpreted as Kirchhoff type migration or, alternatively, it is within
the spirit of Claerbout’s ‘full wave equation’ migration (with propagators quite different
from those used by Claerbout). It is important that despite the difference in
interpretation, the rotal domain of integration remain the same in both cases.

In our considerations the position of the source was fixed. If the source position is
not fixed, then (in addition to integrating over all frequencies and receiver positions) the
integral over all source positions along X should be added in (17.23). In this case the
total domain of integration is [signal frequency band]x 0X, x 0X,.

The total domain of integration is always a bounded domain because of limited
apertures and bandlimited signal. It determines the spatial resolution of migration
algorithms. It is transformed under the map in (17.32) into the domain of spatial
frequencies to produce the region of coverage D, in (17.36). The description of D, is,in
fact, the estimate of the spatial resolution since it describes what part of the spatial
Fourier spectrum is available.

The spatial resolution at a given point x defined by the region D, depends on

1) the total domain of integration, which is determined by the configuration of
sources and receivers and the frequency band of the signal, and

i) the map (17.32) of the total domain of integration into the domain of spatial
frequencies, which is determined by the background model. In general, this map is
different for each point of reconstruction.

B e P
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Concluding remarks

This paper demonstrates (without proofs) how to derive migration algorithms using
tools from the theory of pseudodifferential and Fourier integral operators. The purpose
of this presentation is to discuss the mathematical technique as it is applied in the
context of seismic problems rather than to propose a specific algorithm. For this
reason, instead of giving numerical examples, I refer to the papers Miller et. al. (1984,
1987), and Beylkin et. al. (1985), where specific algorithms are presented along with
numerical examples, and to the papers Miller and Dupal (1987) and Dupal and Miller
(1985), where the results of applying the algorithms to the field data are discussed.
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