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Abstract

We prove that under certain conditions the inversion problem for the generalized Radon transform
reduces to solving a Fredholm integral equation and we obtain the asymptotic expansion of the symbol of
the integral operator in this equation.

We consider applications of the generalized Radon transform to partial differential equations with
variable coefficients and provide a solution to the inversion problem for the attenuated and exponential
Radon transforms.

Introduction

The classical Radon transform of a function u is the function R.u defined on
afamily of hyperplanes; the value of the R.u on a given hyperplane is the integral
of u over that hyperplane. _ '

-Such a transform was studied first by J. Radon [15]. The Radon transform
and its applications were studied by I. M. Gel’fand [2], [3], F. John 8], S. Helgason
(6], [7], D. Ludwig [12], P. D. Lax and R. S. Phillips [10], [11] and others (for -
more references see [7] for example). I. M. Gel'fand, M. I. Graev and N. Ya.
Shapiro [3] introduced a general topological framework (the notion of double
fibration) for generalized Radon transform -R and its dual R*. V. Guillemin [5]
has shown that R*R is an elliptic pseudodifferential operator. E. Quinto [14]
studied the dependence of the operator R*R on the defining measures.

In this paper we consider the inversion problem for the generalized Radon
transform for the special case of double fibration when instead of the family of
hyperplanes (as in the classical case) one has a family of hypersurfaces. We prove
that the inversion problem can be reduced to solving a Fredholm integral equation.

In the first section we define the generalized Radon transform R and its dual
R*. Our definition is a natural generalization of the classical one. We consider
hypersurfaces instead of hyperplanes and introduce densities into the transforms. -

To solve the inversion problem we analyze the Fourier integral operator F
with a special choice of phase function and amplitude and we prove that the
operator F can be factored as F = R*KR, where K is 4 one-dimensional operator
of convolution type. We show that by choosing R* and K properly the operator
F can be made equal to I + T, where T is a compact operator in an appropriate
space. We obtain the asymptotic expansion of the symbol of the operator T. Also
we- show that if the generalized Radon transform is a small perturbation of the
classical one, then the operator T is small. (In the case of the classical Radon
transform T=0.)
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In Section 6 we define the transform R, which is a further generalization of
the Radon transform.

In the following section we consider applications of the transform R, to
partial differential equations. Applications of the classical Radon transform to
partial differential equations can be found, for example, in [1], [2], [6], [10], [11].
The basis for such applications is-the fact that the composition of the classical
Radon transform and a partial differential operator with constant coefficients
transforms the latter into an ordinary differential operator.

In particular, the solution of the Cauchy problem for the wave‘equation can
be represented with the help of the classical Radon transform (see [10], for
example). Having this in mind, we prove that the composition of the generalized
‘Radon transform with a partial differential operator with variable coefficients
transforms the latter (locally) into an ordinary differential operator up to some
smooth discrepancy.

Also, we demonstrate in the last section how the inversion problem for
attenuated and exponential Radon transforms can be solved using the approach
developed in this paper.

1. Generalized Radon Transform and Its Dual

In this section we give definitions of the generalized Radon transform and
its dual.
To describe a surface in n-dimensional Euclidean space R” we introduce a
function ¢(x, #) defined on X X (R"\{0}), where X is a domain in R". We assume
that the function ¢(x, 8) satisfies the following conditions: ,
" (i) ¢(x, 0) is a real-valued C* function on X X (R"\{0}).
(ii) ¢(x, 6) is homogeneous with respect to 6 of degree one:
&(x, A0) = Ad(x, 6) for real A.

(iii) d.¢, the differential of ¢ with respect to x, does not vanish anywhere in
X x(R™{0}).

(iv) The function h(x, 8)>0 in X X (R"\{0}), where

Fo(x, 6))
ax’ a6* )

h(x, 6) =det (

In the case of the classical Radon transform ¢(x, 6) =x- 6, where “-” denotes
" the standard inner product in R".

Given ¢, we construct a family % of (n— l)-dxmensmnal surfaces H;, in the
domain X, where

H,,={xeX|s=¢(x,w),seR" wecS"'}.

As follows from (i), H,, = H_; _,: Hénce, ¥ can be identified with (Rf xS" Y/ Z,.
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We denote by [s, @] elements of # =(R'xS"")/Z,. For given xe X let Y,
be the set of all hypersurfaces from the family % passing through the point x € X,

Y, ={{¢(x, w), v]e X|we S"'}.
In order to have double fibration (see [3]), two conditions must be satisfied:
(v) if H;, = H; -, then [s, o]=[s", ®'].
(vi) if Y, =Y., then x=x".
In our case, (v) and (vi) are consequences of the conditions (iii), (iv) and the
implicit function theorem.

Now we can introduce the generalized Radon transform R and its dual R*.
For functions u € C5(X) we define the generalized Radon transform R as follows:

1.1 (Ru)([s, o]) = J. u(x)a(x, w)l,

where () is the diﬂ"érential form
3p(x, w)/3x’
V. (x, »)?

The differential form () has been chosen to satisfy the following identity

(1.2) Q=Y (-1)y"! dx' A onde T AdTI A - A dX
i=1

1.3) dp(x, 0)AQ=dx'n+-ndx".

The density a(x, w) in (1.1) is a positive function on X XS"~'. We assume that
the density a(x, w) belongs to C*(X X S$""') and satisfies the condition a(x, w)=
a(x, —w).

To introduce the dual transform let us consider the space of functions

C®(3) ={v(s, w)e C*R' X S" | v(s, ®) = v(—s, —w)}.

For functions ve C*(%) we define the dual transform R* as follows:

(1.4) (R*v)(»)= _[

lew|=

b(y’ w)v(s, w)!s=¢(y,w) dwa
1

where the density b(y, ) is a positive function on X X $"~'. We also assume that
the density b(y, ®) belongs to C*(X xS"™') and satisfies the condition b(y, w) =
b(y, —w).

Sometimes. (in tomography, for example) the dual of the classical Radon
transform is called the backprojection operator; hence, by analogy, one can call
R* the generalized backprojection operator.

We shall use the notation (Ru)(s, w) for the generalized Radon transform
(1.1). We note that the relation

(Ru)(—s, —0) = (Ru)(s, w)

is always. satisfied.
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2. The Fourier Integral Operator F

We denote by a(x, 6) and b(y, 8) the extensions of the densities a(x, w) and
b(y, ) on the space X x(R"\{0}) by the formulae

a(x, 0) = a(x, w),
b(y, 8) = b(y, w),

where 670 and w = 6/(6). ' -
Let U(s) be an infinitely dlﬁerentlable real function whlch has the following
properties:

U(s)=U(-s)
and .
pEUs) = ClRH™ Y,
1/2

where m is an arbitrary real number and (s)=(1 +s D)
We define the amplitude A(x, y, 6) by the formula

A(x, y, )= a(x, 6)b(y, ) U(16))-

We can always choose the function U (by setting U ({8]) = 0 in the neighborhood
of the point 8 =0) in such a way that A(x, y, 6) belongs to S™(X XX XR"), ie.,
A(x, y,0)e C*(X x X XR") and for every compact Q= X XX and for every
three multiindices a, B, ¥ there is a constant Co(a, B, v) such that

IagaBa;A('xa Y, 0)' = CQ(a’ B’ 7)<9>m—lal’ )

where (8)= (1 +|6)'°.
For functions u € C3(X) we introduce the Fourier integral operator F as
follows:

(2.1) (Fu)(y) =——1—n J‘ J eid)(x’y’e)A(x, ¥, B)u(x) d§c de, |
@m)" JrmJx

where

(2'2) » ¢(x5 Y, 0) = ¢(x9 0) - ‘f’(}’, 0)'

The standard procedure can be applied (see [16], [18]) to regularize the integral
at the right-hand side of (2.1), if it is necessary.
Let us consider the set Co,

Co={(x, , )|Ve®@(x, y, 0) =0, x€ X, ye X, 6€ R"\{0}}.

1t follows from the definition of ®(x, y, 8) in (2.2) and condition (iv) that in our-
case ' '

Co=1(x, x, 0)|xe X, 6 R"\{0}}.
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Remark. In further arguments we shall deal with amplitudes A(x, y, 8) which
belong to C*(X XX X(R"\{0})). We shall treat them as if they were from the
class C*(X X X xXR"), since we can always change them in the neighborhood of
the point 6 =0 to obtain the desired property, while the operator F will be -
changed only by a regularizing operator.

Moreover, we can define the Fourier integral operator F in (2.1) for A(x, y, 6) €
STX X X x@®R"\{0}).

3. Factorization of the Fourier Integral Operator F

We introduce spherical coordinates in (2.1), so that d8 = r""' drdw and we
can write the Fourier integral operator in (2.1) as

(Fu)(y)= J G(y, ) dw,

lol=1

where

Gy, w)= 1 - J (J e eI A(x. v, rw)u(x) dx) "l dr.
2m)" Jo \Jx

The function G(y, w) is integrated over the sphere |w|= 1. Hence, it is sufficient
to consider only its-even component in w, i.e.,

G*(y, 0) =} G(y, w) + G(y, —w)).
We have

+0o

1 .
G**"(y, w) = - (J e" PP A(x, y, rw)u(x) dx>|r]"_l dr.
2Q2m)" Jow \Jx

By virtue of (1.3), dx =ds A Q, where s = ¢(x, w). Now using (1.1) and (2:2) we
obtain :

+00

Gy, w) :_——2(2177-)" j_ - (e"i"”(y'“’)b(y, o)U(r) J' e™(Ru)(s, w) ds)]r|"_l dr.

Applying Fubini’s théorem, we have

G.1)  (Fu(»)= Jl - do b(y, w)(f (Ru)(s, @)K (s = 5)s- 40,0 ds>,

where

1 J‘ +00
221" )

We note that if: U(r) does not decay sufficiently fast, then K(s) is a generalized
function. Let K denote the operator with the generalized kernel K(s—s"). We

3.2) K(s)= [r|" "t U(r) €™ dr.




584 GREGORY BEYLKIN

can write (3.1) as
3.3) F=R*KR.

We summarize our result as

THeoREM 1. The Fourier integral operator F in (2.1) can be factored into the
form (3.3), where R is the generalized Radon transform (1.1), R* its dual (14),
- and K is the operator with the kernel (3.2).

Theorem 1 is a generalization of Theorem 1.1 of [12].

4. Inversion of the Generalized Radon Transform

In this section we prove that the operator F in (2.1) is a pseudo-differential
operator. Further, we show that, given functions ¢(x, 8) and a(x, w) in (1.1), we
can define the density b(y, @) in (1.4) and the function U(r), so that the operator
F will be “almost” the identity (up to a less singular operator).

Condition (iii) implies that F maps Cg(X) continuously into C7(X). It also
implies that the map defined by the integral in (2.1) can be extended as a
continuous operator

F:&(X)~» 2'(X),

where @'(X) is the space of distributions on X (the dual of Cg(X)) and €'(X)
is the space of distributions with compact support (the dual of C*(X)). We shall
say that an operator is regularizing if it maps €'(X) into C*(X).

Let £™(X) be the class of standard pseudo-differential operators of order m.
The Fourier integral operator belongs to £™(X) if it has phase function
®(x, y, 0)=(x—y)- 6 and amplitude A(x, y, 8)e S™(X XX XR").

We denote by £ (X)) the intersection of all £™(X), where m is real. Every
pseudo-differential operator from the class L™*(X) is regularizing and every
regularizing operator can be represented as an operator from the class £~ (X))
(see [18] for example).

After these preliminary remarks we are able to state the following theorem.

THEOREM 2. (i) The operator F in (2.1) is a pseudo-differential operator. If
A(x, y, 0)€ S™(X X X XR"), then F e £™(X).

(ii) Set b(y, 8)=h(y, 8)/a(y, 8) and U(|6])=1 in (2.1), where h(y, 6) is given
by condition (iv). Then the operator defined in (2.1) can be extended to the operator
F: L}(X, compact)-> L*(X, loc),

so that
F=1+T,

where T is a compact operator.
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Proof: We can always find a function x.(x,y)e C®(X xX) such that
0=y.=1 and

xe(xy)=1 if |x—y|<ie,
X(x,y)=0 if [x—y[>e¢,

for £ >0. We can write the operator F as a sum F=F, +15, where

(Fu)(y)= - J J' e PN A(x, y, 0)x.(x, y)u(x) dx dé,
Q7)Y Jrm Jx
and
o 1 |
(Fu)(y) =an" Ln L e’ PO A(x, y, 8)(1— x.(x, y))u(x) dx db.

Since the amplitude A(x, y, 0)(1 - x.(x, )) vanishes in the conic neighborhood -
of the set Cq, the operator F is regularizing. '

To prove that the operator F, is pseudo-differential we shall use the following
theorem (Theorem 19.1 of [16]): .

THEOREM 3. Let X be a domain in R™. Let Y(x, y, §) be the phase function
defined on X X X x(R"\{0}) and A(x, y, )€ S™(X XX XR") be the amplitude of
the Fourier integral operator F.

i
(a) Vf"//(xs y’ é:) = 0 lfand only ifx = ys
(b) Vap(x, x, H=¢

then F e ™(X).

In our case if ¢ is sufficiently small we can write the phase function ®(x, y, 6)
in the conic neighborhood of the set Co as

B(x, y, 6)=(x~y)-V,8(y, 6) +O(x — yI|6)).
Introducing a new variable ¢ by the relation
§=V,06(, 0),
we have
dé =h(y, 0) db,

where the function h(y, 8) is defined in Section 1, condition (iv).

It follows from condition (iv) and the explicit function theorem that there
exists a function 6 = 6(y, £), 0(, £)€ C*(X XR"), such that §=V ¢ (y, 0(y, &) for
y € X. The function 6(y, £) is homogeneous of degree one with respect to &
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We can now rewrite the operator F,:

1 A :
(Feu)(y)= an’ JJ exp {i(x = y)- £ +O(Ix = y"| 0} Ao(x, y, &)u(x) dx d¢

where

A(x, ¥, 603, £)

AO(x’ Y f) = h(y, e(y’ é‘_,)) Xe

(x, »)-

Both conditions of Theorem 3 are satisfied, if ¢ is sufficiently small. Hence,
F,e ™(X). Since Fe #7°(X), we see that Fe £™(X). '
To prove the second part of Theorem 2 we need the following

LemMa 1. Anoperator Be £™(X), where m <0, can be extended to a compact
operator from L*(X, compact) to L*(X, loc).

The proof of Lemma 1 can be found in [18].

To complete the proof of Theorem 2 it is sufficient to show that F — I € £™(X),
for some m < (0. We shall do this in the next section.

Let us summarize our results. Theorems 1 and 2 reduce the inversion problem
for the generalized Radon transform (1.1) to solving a Fredholm integral equation.
More precisely, given the generalized Radon transform v(s, w) = (Ru)(s, ), we
can find the function u as a solution of the integral equation

.1 u+Tu=R*Ku,

where the operator T is given in Theorem 2.
The integral equation in (4.1) is a generalization of the well-known formula
for the inversion of the classical Radon transform. It follows from the following

LemMMA. If, in the conditions of the second part of Theorem 2, we assume in
addition that

b(x, 0)=x-0+(ex, 0)
and
a(x, 0)=d(ex, 6),
where ¢ is a small parameter, then the operator T in (4.1) can be written as T = eT,

where T remains bounded when ¢->0. In particular, in the case of the classical
~ Radon transform, T =0.

The proof of the lemma can be obtained by considering the operator T=F -1
and expanding its phase function and amplitude with respect to e.
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5. Asymptotic Expansion of the Operator F

In this section we construct the asymptotics of the operator F modulo
regularizing operators. Thus, we can restrict our considerations to some conic
neighborhood of the set Cg, where we can write the phase function ®(x, y, 8) in
(2.2) as

O(x,y,0)=V,6(, 0)-(x—y)+ H(x, y, 0),
where . -

@1
H(x, y, 0)= | |Z=z 1260, O —y)%

Here o is a multiindex, ie., a =(a;, -, a,), |a|=a,+ay+ - -+a,, and 3; =
a1 - - - dgn, where 9, = (1/i)3/ay".

We set N
* /]
b 0)=7 2,
and
ugeh=1-
_in (2.1).

We consider the operator F;:
1 . .
(Fu)(y) === J. J' exp {i(x—y)-V,¢(y, ) +itH(x, y, 6)}
(2m)" Jar Jx

a(x, 6)
*a(, 0)

h(y, 8)u(x) dx dé.

Obviously,
=F,

3

F,

and we have

N 1 d m l(l__t)N( d>N+l
. F= —|—] Fy_+ — F, dt.
G-D ' mZ=0 m!(dt) bico Jo N! \at

Introducing a new variable (see Section 4) by the relation ¢ =V ,¢(y, 8), we obtain

ax, 6(», £))
a(y, 6y, )

where 6(y, £) is homogeneous of degree one with respect to £ and é=
V,é(y, 60y, €)) for ye X. We have

((9 F'“)‘Y) Gy J L exp {i(x - )£ +itH(x, 3, 003, £))}

(Eu)(y)=(2—:r)—,,— J " J _exp {ix=y)- £+ H(x, , 00, )} u(x) dx d,

5.2
G2 a(x, 6(y, £))

a(y, 8y, £)) 4 () Fx &
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The function H™(x, y, 8) can be written in the form

|| =00 ol m

Hm(x,y,0)= 3 — I 05 ¢, 0)(x— e,

laj=2m & !k—
where a=(a',a? - -,a™) |a| la'|+- - - +la™], '—a"---am!, 9% =
1 "
8% +--9%, and the element a® is a multiindex, i.e., K=(af, -, a¥), where
k=1,2,---,m
Also, we have
a(x, ) U i1 55°a(y, 6) o0

a3, 0) L5, % a(y6) (=)

The relation

K itx—y)- K itx—y)
3? el ,v)§=(.x_y)0«‘ el » f’

where k=0,1,---,m, implies that we can write (5.2) as

d\" 1 lalzeo jlolm
((E> i '“)” )= taEom
xJ'J’ 3g e H < b, 0) (y(y(;)e) e 0y (x) dx d¢,

where 8=0(y, £) and a=(a’ a', -+, a™). Here a* is a multi index and k=
0,1,---,m
Integrating by parts and setting t =0 we obtain

a\" 1 i(x-y)-€
((dz) “'°>(”‘(2w)J J ¢

|laj=0c (__; lal—m a /] ’
(5.3) VR S L (n 8= b (y, )t a(.6) )u(x) dx dt
laf=2m al (J’, 6) 0=10(y,£)
Let T denote the operator defined by the formula
1 (i)' J J ey
Tru e'e
o (Tru)y)= 2ny MZM, 2l Jur by
. . :
m & a7 a(y, B)
xagl 11 a5 o, O)=——— )u(x) dx dg,
g(k=l Y ) a(y, 0) le=e0.0
where a =(a’, a' ,a™).
The amphtude of the operator T7" is homogeneous of degree —I=m—|a|

with respect to & Hence, T7" belongs to £~ '(X). Since min (|a|) =2m, we have

d\" [=o0
—) F, = m
(ldt) li-o lz:m 7,
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d\" m
(E) F,|'=OE$ (X)

It is not difficult to see that Theorem 3 implies that an operator of the form
(5.2) be‘longs to £~ ™(X) for all 1[0, 1]. Using this fact and the relation (5.1)

we have

and

_ § L i mF 63—(N+1)(X)
meo mI\ dt ! ’

for N=0,1, -
Let us gather all operators with amplitudes of the same degree of homogenelty

with respect to & We obtain
(5.5) F=% T, (up to a regularizing operator),
=0

where

m=1

=% Tr.
ni=0

We compute now T, and T. Obviously, T, = I For T, we have

J‘J‘ - fqz—" ¥ [(3d(y, 0)
piret 987 3E°\ 87 3y | omairt)

! i(x—y)¢ o 9 (aa(ys e)/a)’l ) dx d
+(2 )"JJe sz afj a(y, 8) 0=0(y,£) u(x) dx dg

Let us consider h,,, (y, 8) =3¢" /60“ and h’“’(y, 0)=286"/3¢". Since h,, (y, 0)
3¢ (y, 0)/3y”96* and h,,“h"” = 5:, where 87 is the Kronecker symbol, we have

zr 9 (62¢(y,0) )_ 1 h(s, 0)
a=1 08\ 3yF 0y lo—o(ney/ h(3, 0) ay

where the function h(y, 8) is defined in Section 1, condition (iv). Hence, we obtain

(Tyu)(y)= 20 l)n )u(x) dx d¢

>

8=0(y,¢)

(5.6)
i(x— ,V)E l_‘l(_a_. (M
(Tyu)(y)= 2 Jje ENEY 1o a(y, 8)

We summarize our result as

))u(x) dx dt.
6=6(y,£)

THEOREM 4. If b(y, 8) = h(y, 6)/a(y, 6) and U({6])=1 in (2.1), then (5.5) is
the asymptotic expansion of the operator F, that is

T, e £7(X), ' I=0,1,---,
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and

N
(F— 3 T,)e.ff"(N”)(X) for N=0,1,---.
I=0
In particular,
(F-DeZ '(X).

Moreover, we have obtained the explicit formula (5.6) for the operator T;.

~ CoroLLary 1. If a(x, w)=h""*(x, 0) and, thereby, b(y, )= h"*(y, w), then
(F-De L %X). :

Corollary 1 follows from (5.6).

6. The Generalized Radon Transform R,

The generalized Radon transform in (1.1) can formally be written as

61 (R(a)u)(s, w)=J _u(x)alx, ©)8(s — $(x, »)) dx,

where 8 denotes the §-function concentrated on the surface s = ¢(x, w). We use
the notation R(a) to indicate explicitly the density a(x, ).
We introduce the generalized Radon transform R,(a) as follows:

) (Ru@is, )= [ utmats 00 TEELDE 4

where (s — ¢(x, w)), =max {s — &(x, w), 0}, and T is the Gamma function.

In general, we cannot define (6.2) for [s, w]e RxS"™")/Z, as in (1.1). The
transform (6.2) is defined for (s, w) e RXS"".

The parameter A is complex-valued and the generalized Radon transform
R,(a) is an entire analytic function of A. If A =—k, where k=1,2,---, then
R_i(a)=3*""R(a). In particular, R_ (a) = R(a), where the transform R(a) is
described in (6.1).

The integral in (6.2) is well defined for u € C3(X). We assume that the function
¢(x, w) satisfies the properties (i)~(iv) and that the density a(x, w) belongs to
C®(X xS"""). We no longer assume in this and the following sections that the
density a(x, w) is positive and an even function with respect to o.

However, the analogue of Theorem 1 holds if the densities a(x, w) in (6.2)
and b(y, w) in (1.4) are either both even or both odd with respect to w. In fact,
we need their product a(x, w)b(y, w) to be even with respect to w to prove

THEOREM 5. The Fourier integral operator Fin (2.1) can be factored in the form

F= R*K,\RA,
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where R, is the generalized Radon transform (6.2), R* is defined in (1.4) for
ve CP(R' x8"™"), and K, is the convolutional operator with the generalized kernel

—i(A+1)m/2 [ +oO 4
(6.3) KA(S)Z—WJ:& |r" U@ (r +i0)* ! e™ dr.

To prove Theorem 5 we repeat the proof of Theorem I taking into account that

+oo

e (R (a)u)(s, w) ds = j _a(x, @) e y(x) dx.

33

e—-i(,\ +l)1'r/2(§ + io),\-H J

-

The generalized Radon transform defined in (6.2) has the following property:
©64) 0.R,(a)= Ry-i(a),

which we shall use in the next section, where we discuss applications of the
transform R, to partial differential equations.

7. Applications of the Generalized Radon Transform to Partial
' Differential Equations

1t is well known that the classical Radon transform R, reduces the Cauchy
problem for the wave equation with n +1 independent variables

(@7 —2)u=0,
(7.1) u(0, x) = fi(x),
u,(0, x) = fo(),

to the problem with two independent variables

@1 -a)v=0,
(7.2) (0, s, @) = (RA)(s, @),

(0, 5, @) = (Refo)(s, @),
where '

v(t; s, w) = (Rau(t, x))(s, o).

(Let us recall- that the classical Radon transform R, is the special case of the
generalized Radon transform (6.1), where ¢(x, w)=x-w and a(x,w)=1.)

For each w, (7.2) is a solvable Cauchy problem in two independent variables,
where o is a parameter. The function u(t, x) can be recovered by the inversion
of the classical Radan transform (see [1], Chapter VI, Section 14, and [8D.

The generalized Radon transforms in (6.1) and (6.2) yield the same type of
reduction for the case of equations with variable coefficients.
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Let us consider the second-order elliptic differential operator with smooth

coefficients
Lu= axi(a,»jaxju) + B0 u +yu,

where a; = a;;, d|£° = ay8'¢ = B|¢]%, 0< & = B, and the operator formally adjoint
to it,

L*v =09, (00,0) — d5(B:v) + yv.
We denote
[u, w]= oo, ud.w,
and

Lw= axl,(a,-jaxiw) — Bidxw.

LEMMA 2. The composition of the generalized Radon transform in (6.2) and
the differential operator L can be written as

- (13) R\(a)L=R,_y(a[¢, $])— Ry_i(aLe +2[a, ) + Ry(L*a).

To prove Lemma 2 we observe that we can differentiate the function
(s—¢(x, w))i/T(A +1), i.e., the formal relation

—dxo)h_ (= d(xw)i”
% T(A+1) T(\)

ax,-¢(x’ w)

is well defined (see [4], for example). Thus, we can prove Lemma 2 integrating
the expression R,(a)Lu by parts.
We would like to make use of the relation in (7.3) and thus our first step is
_to simplify it. Let ¢(x, ) in (6.2) be the solution of the eikonal equation

(14 [#, 01=1,

such that ¢(x, —w)= —@(x, w), where w € §"~'. We assume also that the function
¢ (x, 0) satisfies conditions (i)—(iv), defining the function ¢(x, 8) for 6 #0 as

¢(x, 0)=ro(x, ),

where 6 =rw and |w|=1. We assume here that such a solution exists in some
domain X. (In general, the existence of this solution can be proven only locally.)
Let a(x, w) be a positive solution of the transport equation i

- (7.5) aL¢ +2[a, $]=0.

It follows from Lemma 2 and the relations (7.4), (7.5) and (6.4) that
(7.6) R,(a)L=03R,(a) + R,(L*a). ’
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We can consider now the Cauchy problem for the wave equation with variable

coefficients:
@*-Lyu=0,

) U)o = S1(%X),
wy,_ = fo(x),
where x € X. Making use of (7.6) we obtain
(07— 3o =(R\(L*a)u)(s, w),
(7.8) Y, = Ry (a)f1)(s, ),
vy, = (Ry(a)f2)(s, w),

u(t, 5, w) = (Ru(@)u(t, x))(s, ®)-

The representation (7.8) is a generalization of (7.2) for the case of variable
coefficients. It has a physical meaning since the function a(x, @) is a solution
of the transport. equation (7.5). Let ar(x, w), k=0, 1,---, be a sequence of
functions which satisfy the iterated transport equation

aoL +2[a,, $1=0,
alLe +2[a, ¢1= L*ar_,, k=1,2,-.

where

(7.9)

In these notations a(x, w) = a«(x, ®). We note that the density L*a in (7.8) is
the discrepancy in the iterated transport equation in (7.9). Equations in (7.9) are
exactly the same as those which appear if we seek the solution of the Cauchy

problem in (7.7) using the ray method.
We can emphasize such a connection by introducing the transform RY N=0,

1,2’...’

N
RY =kz 374 R, (ay),
=0

where the notation 3; is used for the k-th antiderivative. The function ¢(x, )
in the transforms R,(a;) satisfies the eikonal equation in (7.4) and is the same

" as in the previous case.
From Lemma 2 and relations (7.4), (7.9) and (6.4) we see that

(7.10) RNL=3*RY +37VR,(L*ay).
~ (Obviously, if L*aye=0 for some N°, then RN L=§RMN")
For the Cauchy problem in (7.7) we have
(@1 —a)v=28;"(Ry(L*an)u)(s, ),
(7.11) ‘ v, = (RYF)(s, @),
U,oo = (RYS)(S, @),




594 GREGORY BEYLKIN

where
o(t, 5, @)= (R} u(t, x))(s, w),

for N=0,1,2,---.

The relation in (7.10) means that the second-order elliptic differential operator
L can be represented by the operator a2 (up to a smoothing operator) in a domain,
in which we can construct the appropriate generalized Radon transform (6.2). In
ihis case the hypersurfaces are generated by the eikonal equation (7.4) and the
densities a,, a,, - - - are solutions of the transport equations (7.9).
~ Although we shall not consider it here, we note that the representations (7.8)
and (7.11) can be used for the construction of Riemann’s radiation kernel for
linear hyperbolic initial value problems in the case of variable coefficients (see
[1], Chapter VI, Section 15).

Remark. We have chosen the second-order differential operator L for sim-
plicity. The construction can be applied to higher-order differential operators as
well.

8. The Inversion of the Exponential and Attenuated Radon Transforms

The exponential and attenuated Radon transforms arise in single photon
emission tomography (see [17] for example). In this section we use the approach
developed earlier in this paper to solve the inversion problem for these particular
transforms.

We consider

8.1 T (RS, o) = J u(x) e™ (s - x- w) dx,

where e™™*“) is the density, @ is a unit vector and m(x, w) is an infinitely
differentiable function of its variables. The expression (8.1) is known as the
attenuated Radon transform.

The inversion problem we address is the problem of reconstructing a function
(which vanishes outside some bounded region X of the plane) from the known
transform (R,.u)(s, ) and a given function m(x, ).

We also consider the exponential Radon transform

8.2) (R u)(s, ) =J

, u(x) e 8(s —x-w) dx,
R
where u is a constant, and w™ denotes the unit vector orthogonal to the vector
© = (w;, w,): 0* = (—w,, ). The transform in (8.2) is a special case of the attenu-
ated Radon transform (8.1) corresponding to the case of the uniformly attenuating
medium.

Since the function m(x, w) does not necessarily equal m(x, —w), we cannot -
define the attenuated Radon transform (8.1) on the space (RxS')/Z,; thus we

consider it on the cylinder RxS".
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We define the even part of the transform R,, as follows

(8.3) (R u)(s, w) = J u(x)a(x, w)d(s — x- w) dx,
RZ

where

a(x, w)=3em* + ™5,

Since a(x, w) = a(x, —w), the transform (8.3) is defined on the space (R X sY z,
and we can apply Theorems 1, 2 and 4.
We let the density of the dual transform be as is suggested in Theorem 2, i.e.,

1
8.4) (REv)(y)= J.|,,,|=| mv(s, w)!szy.w do.

By introducing the operator F in (2.1) for this case and applying Theorems 1
and 2 we reduce the problem of inversion of the attenuated Radon transform to
solving the integral equation

(8.3) u(y) +H(T.u)(y)=f(»),
where :
f@)=(R5LKv)»).

Here T,, is the operator in Theorem 2 and the operator K has the generalized
kernel

1 +00 ]

8. K(s)=——— " dr.
(8.6) =357 L Il " dr,

The function

(s, ©) = H{(Rntt)(5, ®) +(Rptt)(—s, —w))

is given.

Theorem 4 provides us with the asymptotic expansion of the operator T,,.

The first term T of the asymptotic expansion of the operator T,, (the most
singular part) can be written as

T _ i ) i(x—y)-6 ) 62 0
EI(F0) =5 J'RZ L o (kzl eyt a( » |9|)>u(x) dx db.

(It is possible to obtain more terms in the asymptotic expansion of the operator

" if necessary.)

In the case of the exponential Radon transform in (8.2) we can derive the
exact integral equation for the inversion problem.

We define transforms (RS"u)(s, w) and (R%™u)(s, w) by the following
relations:

(beve“u).(s, w)= J. - u(x) cosh (ux- @*)8(s — x* w) dx,
| o .
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and

(RSMu)(s, w) = J , u(x) sinh (ux-0*)6(s — x+ @) dx.

R

We introduce dual transforms R¥*" and R¥°¢ as
(RE "0, )(y) = J cosh (uy- @ )v.(s, ®)|s=y.. do,
|w|=1
and

(RE“v_)(y)= J sinh (uy- 0 *)v_(s, )=, do,
w|

ool =1

where the functions v, and v_ satisfy the relations v.(s, )= v.(—s, —w) and
v_(s, w)=—v_(~s5, —w).
We consider the pseudo-diﬂerential operator F,,

(8-8) - (Fau)(n)= @) J-fcosh (,u(x—y)’-%) e’ ™™y (x) dx db,

where 6+ is the vector orthogonal to the vector 9: 6+ =(- 02, 8,). The operator
F, can be written as F, = F, — F,_, where

—(277)2 J-J' cosh (}/«x-ﬁ)—l) cosh ( |69|> 1m0y (x) dx d,

(F u)(y)= Oy J'J‘ sinh(,u. |00|) smh< |00L|) =y "u(x) dx do.

It is easy to verify that Theorem 1 holds for the operators F,, and F,. Thus, we
obtain

(Fi

and

+ _ pk.even even
Fi=R¥*"KRS

and
F, = R¥°4 KR,

The operator K has the generalized kernel described in (8.6).
We need the following

LEMMA 3.

I(p, x)= 2 )J (COS‘l(#X'l%) ) ”‘gdf— ||II(M|xDs

where I, is the modified Bessel function of order one.
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The proof of Lemma 3 can be found in the appendix.

Lemma 3 implies that the operator F,, in (8.8) can be representedas F, =I + T,
where the operator T, has the kernel

I(w|x—
Tx )= A

Thereby, the inversion problem for the exponential Radon transform is reduced

to solving the integral equation

I(p|x —yD)

) L) dx =10

(8.9) u(y) +ij
2 X

where

) =(REV"Kv.,)(») — (RE* Kv_)(»).
Functions v, and v_ are the even and odd components of the exponential Radon
transform (8.2),
U_,.(S, w) = %[(R,,,u)(s, w) +(Rﬂu)(—s, _w)]’
and 7
v_(s, w) = (R.u)(s, @) — (Ruu)(—s, —)].
The functions v, and v_ are assumed given. It is easy to see from the power

~ series expansion that the kernel of the operator T, is an infinitely differentiable
function.

The integral equation (8.9) was first obtained by F. Natterer in [13] by a
different approach. The numerical results of the inversion of the exponential
Radon transform using the integral equation (8.9) can also be found in [13].

" Appendix

To prove Lemma 3 we introduce the polar coordinates & =r cos ¢ and
&, =rsin ¢, such that

x+£=r|x| cos ¢,
x- & =r|x|sin ¢,

where £=(&,, &) and ¢ =(—§&, §). We have

] e s ir|x| cos 4
I(;L,x)=(2—w—)-5J'0 J:) (cosh (x| sin ) — 1) e™ =¥ dys r dr.
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We set y = cos ¢; then sin ¢ = (1 —y)"/? for ¢ € [0, 7], and sin ¢ = —(1 — y?)"/?
for ¢ e [w, 27]. We obtain

I(p, x

(e e
=Gy J (cosh (ulx|(1-y*)"") 1) "™ (1 ~y*)"* dy rdr.
. 0 -1 R
Expanding cosh (u|x|(1 —y?)

'/2) in power series we have

———2k| |2k l irfx] 23 k—1/2
10=Gm |, & G J e (1-y)T P dyrd
0 k= LI

Since
1
Jk(Z)=m(%z)kJ eizy(l_yZ)k—l/2 dy,
ks 3 -1

where J, is the Bessel function of order k, we obtain
' o 2k| xlk

1
T )= 2 =

We have (see [9], formula 21.8-23)

J“"’ r M T (rlx)) dr.

L r** J(ar) dr=2""*a"* 2—*—(’(_1)!,

where k= 1. Hence,

‘ o 1 2k—1
I, x) =55 1 ()™

2arlx| 21 k(= 1)!

and the proof is completed.
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