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ABSTRACT
We present a new fast algorithm for computing the Boys function using a nonlinear approximation of the integrand via exponentials. The
resulting algorithms evaluate the Boys function with real and complex valued arguments and are competitive with previously developed
algorithms for the same purpose.
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I. INTRODUCTION
The Boys function1

F(n, z) = ∫
1

0
e−zt2

t2ndt =
1
2∫

1

0
e−zssn−1/2ds (1)

appears in problems of computing Gaussian integrals, and over
the years, there were many algorithms proposed for its evaluation;
see, e.g., Refs. 2–10. The Boys function is related to a number of
special functions, for example, the error function and the incom-
plete Gamma function, and (for a pure imaginary argument) to the
Fresnel integrals.

It is common (see, e.g., Refs. 5 and 7) to use recursion to com-
pute the Boys function for different n. The recursion is obtained via
integration by parts,

F(n, z) = −
1
2z∫

1

0

d
ds
(e−zs
)sn−1/2ds

=
n − 1/2

z
F(n − 1, z) −

1
2z

e−z , (2)

and can be run starting with n = 1 so that we need to have the value
F(0, z) or starting from a large n = nmax and going to n = 1,

F(n − 1, z) =
z

n − 1/2
F(n, z) +

1
2(n − 1/2)

e−z , (3)

so that we need to have the value F(nmax, z). In order to avoid a loss
of accuracy, the choice of which recursion to use depends on the size

z and nmax. Iterating recursion (2), the dominant term expressing
F(n, z) via F(0, z) is∏n

j=1(j − 1/2)/zn. We set

z∗ =
⎛

⎝

n

∏

j=1
(j − 1/2)

⎞

⎠

1/n

and choose (2) when ∣z∣ ≥ z∗ and (3) if ∣z∣ < z∗. For example, if
nmax = 18, then z∗ ≈ 6.75. We note that other choices of the param-
eter z∗ are possible.

At each step, recursions (2) and (3) require only three multipli-
cations and one addition (since the coefficients can be computed in
advance and stored), so it is hard to obtain a more efficient alter-
native if one needs to compute these functions for a range of n,
1 ≤ n ≤ nmax. In order to initialize these recursions, we need fast
algorithms for computing F(0, z) and F(nmax, z). Computing F(0, z)
for real z is straightforward since

F(0, z) = ∫
1

0
e−zt2

dt =
√

πErf(
√

z)
2
√

z
. (4)

For a real argument, an optimized implementation of the error func-
tion Erf is available within programming languages. For a complex
argument, we present an algorithm for computing F(0, z) using a
nonlinear approximation of the integrand following the approach
in Ref. 11. We obtain a rational approximation of F(0, z) with an
additional exponential factor.

We note that, as a function of complex argument, the Boys
function F(0, z) can be highly oscillatory. In particular, if z is purely
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imaginary, then the Boys function is related to the Fresnel integrals,

S(y) = ∫
y

0
sin(

π
2

t2
)dt, C(y) = ∫

y

0
cos(

π
2

t2
)dt

so that

C(y) − iS(y) = ∫
y

0
e−i π

2 t2

dt = y∫
1

0
e−i π

2 y2s2

ds = yF(0, i
π
2

y2
). (5)

For computing F(nmax, z), instead of tabulating this function as
it is performed for a real argument in, e.g., Refs. 2, 5, 7, and 9,
we use a nonlinear approximation of the integrand in (1) (see
Ref. 11), leading to an approximation of the Boys function valid
for the complex argument ℛe(z) ≥ 0 with tight error estimates.
For ℛe(z) < 0, we compute ezF(n, z) instead of F(n, z). Based
on these approximations, we develop two algorithms, for real and
complex valued arguments. We refer to Refs. 3, 4, and 8 for
previously developed algorithms for the Boys function with the
complex argument. The complex argument appears in a num-
ber of problems, for example, in calculations with mixed Gaus-
sian/plane wave bases in molecules and scattering problems,12–16 in
the context of complex scaling calculations of excited states,17 and
in using gauge invariant basis functions for calculating magnetic
properties.18

II. APPROXIMATION OF F(0, z) FOR COMPLEX
VALUED ARGUMENT

We have

F(0, z) = ∫
1

0
e−zt2

dt =
1
2∫

1

0
e−zss−1/2ds (6)

and use the integral

s−1/2
=

2
√

π∫
∞

0
e−st2

dt (7)

to obtain

F(0, z) =
1
√

π∫
∞

0

1 − e−(t2
+z)

t2
+ z

dt =
1
√

π∫
∞

0
q(t2
+ z)dt, (8)

where

q(ξ) = (1 − e−ξ
)/ξ, ξ ∈ C,

is an analytic function. An algorithm for computing F(0, z) is essen-
tially a quadrature for the integral in (8). Note that if, instead, we
were to use a quadrature to compute F(0, z) via integrals in (6),
then, for each z, we would need to evaluate as many exponen-
tials as the number of quadrature terms. Importantly, when using
(8), we need to evaluate e−z only once and then use the result as
a factor.

A. The case 𝓡e(z) ≥ 0.
We split integral (8) into three terms

F(0, z) =
1
√

π∫
∞

0

1
t2
+ z

dt −
e−z
√

π∫
tmax

0

e−t2

t2
+ z

dt

−
e−z
√

π∫
∞

tmax

e−t2

t2
+ z

dt (9)

and observe that the last term in (9) (without the factor e−z) is
estimated as

RRRRRRRRRRR

1
√

π∫
∞

tmax

e−t2

t2
+ z

dt
RRRRRRRRRRR

≤
1
√

π∫
∞

tmax

e−t2

∣t2
+ z∣

dt ≤
1
√

π∫
∞

tmax

e−t2

t2 dt

=
1
√

π
⎛

⎝

e−t2
max

tmax
−

√

πErfc(tmax)
⎞

⎠

= ϵtmax . (10)

Select tmax = e7/4 to obtain εtmax ≈ 5.9 ⋅ 10−18. For the first term in (9),
we have

1
√

π∫
∞

0

1
t2
+ z

dt =
1
2

√π
z

.

For ∣z∣ ≥ r0 = 0.35, we use quadrature (see the Appendix for details)
to approximate the second term in (9) as

RRRRRRRRRRR

1
√

π∫
tmax

0

e−t2

t2
+ z

dt −
M

∑

m=1

wme−ηm

ηm + z

RRRRRRRRRRR

≤ ε, (11)

where M = 22 and nodes and weights are given in Table I. We note
that it is possible to use the standard Gauss–Legendre quadrature on
the interval [0, tmax], but the number of terms, M, will be larger. As
a result, we obtain approximation

∣F(0, z) − (
1
2

√π
z
−

1
2
√

π
e−z

22

∑

m=1

wme−ηm

ηm + z
)∣ ≤ 2ε + εtmax , ∣z∣ ≥ r0.

(12)

B. The case 𝓡e(z) < 0
In this case, we compute ezF(0, z) rather than F(0, z). Since

the denominator in (8) can be zero, we cannot separate terms in
q(t2
+ z) as in (9). Instead, we split integral (8) into two terms and

obtain

ezF(0, z) =
ez
√

π∫
tmax

0

1 − e−(t2
+z)

t2
+ z

dt +
1
√

π∫
∞

tmax

ez
− e−t2

t2
+ z

dt. (13)

The first term in (13) is approximated by using the Gauss–Legendre
quadrature on the interval [0, tmax]. The function q is analytic, and
therefore, there is no singularity at t2

= −z. Since we can com-
pute derivatives of q, the error introduced by this quadrature can
be estimated using results in Sec. 5.2 of Ref. 19. For example,
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TABLE I. The poles and weights in (12).

m ηm wm ⋅ e−ηm m ηm wm ⋅ e−ηm

1 0.147 787 826 379 695 65 × 10−02 0.866 431 027 201 416 54 × 10−01 12 0.125 395 022 879 192 93 × 10+01 0.574 448 042 214 302 23 × 10−01

2 0.133 172 764 137 258 17 × 10−01 0.857 720 608 434 394 68 × 10−01 13 0.172 446 342 335 733 95 × 10+01 0.420 819 943 469 454 42 × 10−01

3 0.370 635 914 520 525 41 × 10−01 0.839 350 436 829 178 76 × 10−01 14 0.237 152 482 627 818 63 × 10+01 0.258 385 394 482 232 72 × 10−01

4 0.727 525 124 228 827 62 × 10−01 0.809 661 970 413 229 21 × 10−01 15 0.326 137 969 960 783 55 × 10+01 0.124 450 241 572 555 60 × 10−01

5 0.120 236 941 228 785 68 × 10+00 0.769 089 548 492 978 56 × 10−01 16 0.448 513 016 905 959 11 × 10+01 0.429 254 159 259 983 68 × 10−02

6 0.179 574 293 958 937 73 × 10+00 0.731 552 078 711 821 68 × 10−01 17 0.616 806 213 512 248 38 × 10+01 0.935 434 298 773 596 86 × 10−03

7 0.253 534 046 984 087 27 × 10+00 0.726 950 035 163 157 20 × 10−01 18 0.848 247 187 231 786 981 × 10+01 0.108 408 854 665 025 05 × 10−03

8 0.350 388 652 780 721 95 × 10+00 0.752 842 556 089 304 00 × 10−01 19 0.116 653 054 862 967 931 × 10+02 0.527 186 796 676 167 36 × 10−05

9 0.482 109 575 931 276 68 × 10+00 0.770 943 953 645 196 33 × 10−01 20 0.160 424 171 322 883 281 × 10+02 0.776 597 403 975 041 90 × 10−07

10 0.663 028 993 158 374 16 × 10+00 0.754 250 625 677 530 40 × 10−01 21 0.220 619 295 181 470 89 × 10+02 0.221 381 724 226 800 93 × 10−09

11 0.911 814 736 856 590 87 × 10+00 0.689 686 192 650 315 33 × 10−01 22 0.303 401 120 947 083 07 × 10+02 0.659 416 176 003 770 69 × 10−13

we obtain

RRRRRRRRRRRRR

1
√

π∫
tmax

0

ez
− e−t2

t2
+ z

dt −
1
√

π

Mg

∑

m=1
wg

m

ez
(1 − e−(t2

m+z)
)

t2
m + z

RRRRRRRRRRRRR

≤ εg

with M g
= 16 and εg

≈ 10−14, where tm,wg
m are the standard

Gauss–Legendre nodes and weights on the interval [0, tmax]. In the
second term in (13), we drop e−t2

(since its contribution is less than
e−t2

max ≈ 4.2 ⋅ 10−15) and obtain

1
√

π∫
∞

tmax

ez

t2
+ z

dt =
ez
√

πz
Arctan(

√

z
tmax
). (14)

While we obtain an explicit expression, computing arctangent of a
complex argument is relatively expensive. For a complex argument,
we evaluate arctangent using

Arctan(z) =
1
2

i log
1 − iz
1 + iz

.

As a result of dropping e−t2
in the second term of (13), our approxi-

mation in (14) has a singularity at z = −t2
max. In order to avoid using

(14) in the vicinity of singularity, we use two different parameters
tmax and tmax,1 and switch to the version with tmax,1 if ∣z + t2

max∣ ≤ 1/2,
where tmax,1 =

√

t2
max + 1.

We note that it is possible to increase the number of terms in the
quadrature in order to avoid evaluating arctangent. This might be
of interest on a parallel [Graphics Processing Unit (GPU) or multi-
core] computer since computation of quadrature terms is trivially
parallel. As a result, we obtain approximation

RRRRRRRRRRRRR

ezF(0, z) −
ez
√

πz
Arctan(

√

z
tmax
) −

1
√

π

Mg

∑

m=1
wg

m

ez
(1 − e−(t2

m+z)
)

t2
m + z

RRRRRRRRRRRRR

≤ ε̃, ∣z + t2
max∣ > 1/2, (15)

where ε̃ ≈ 10−14. For ∣z∣ > t2
max, we have a converging series for the

second integral in (9) as follows:

∫

tmax

0

e−t2

t2
+ z

dt =
1
z∫

tmax

0

e−t2

t2
/z + 1

dt

=
1
z

∞

∑

j=0
(−1)jz−j

∫

tmax

0
e−t2

t2jdt

=
1
2z

∞

∑

j=0
(−1)jz−j

(Γ(j + 1/2) − Γ(j + 1/2, t2
max))

=
1
z

∞

∑

j=0
(−1)jz−jt2j+1

max F(j, t2
max) (16)

so that we can use
RRRRRRRRRRRR

F(0, z) −
⎡
⎢
⎢
⎢
⎢
⎣

√

π
2
√

z
−

e−z

2
√

πz

J

∑

j=0
(−1)jz−j

(Γ(j + 1/2)

− Γ(j + 1/2, t2
max))]∣ ≤ ϵtmax , ∣z∣ > t2

max, (17)

instead of (12) and
RRRRRRRRRRRR

ezF(0, z) −
⎡
⎢
⎢
⎢
⎢
⎣

ez√π
2
√

z
−

1
2
√

πz

J

∑

j=0
(−1)jz−j

(Γ(j + 1/2)

− Γ(j + 1/2, t2
max))]∣ ≤ ϵtmax , ∣z∣ > t2

max, (18)

instead of (15). Since the parameter tmax is fixed, the coefficients of
the series are computed offline.

Note that the series in (16) and (17) is related to the asymptotic
expansion of F(0, z) (see, e.g., Ref. 4),

F(0, z) ∼
1
2

√

π
√

z
−

√

π
2

e−z

z

J

∑

j=0

z−j

Γ( 1
2 − j)

=
1
2

√

π
√

z
−

e−z

2
√

πz

J

∑

j=0
(−1)jz−jΓ(j + 1/2). (19)
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We use (17) and (18) for ∣z∣ ≥ 100 so that it is sufficient to
keep only seven terms, yielding an error of less than 10−13.

For ∣z∣ ≤ r0, we use the Taylor expansion of (6),

F(0, z) =
∞

∑

j=0

(−1)jzj

j!(2j + 1)
, (20)

and we need 10 terms to maintain an accuracy of about 13 digits.
While selecting parameters as above leads to algorithms with a rea-
sonable speed, we did not optimize these choices as they may depend
on several factors, e.g., computer architecture.

Since the Boys function F(0, z) is related to the error func-
tion (and can be used to compute it), we compared the speed of
our algorithm with that of the well-known algorithm by Gautschi20

for computing the error function with a complex argument using
a rational approximation of the closely related Faddeeva function.
The speed of that algorithm was measured in comparison with the
speed of computing exp(z). In Ref. 20, it is stated that with an accu-
racy of ∼10 digits, the code is 7–15 times slower than the speed
of computing exp(z). Using the same comparison for our algo-
rithm, this ratio is ∼12 for an accuracy of about 13 digits. Our
algorithm is implemented using Fortran 90 compiled by Intel’s ifort
with compiler flags -O3 -ipo -static and running on a laptop with
≈2.3 GHz chipset. We timed our code by performing 106 eval-
uations, yielding ≈0.92 ⋅ 10−7 s/evaluation in comparison with
≈0.79 ⋅ 10−8 s/evaluation for exp(z) with a complex argument.

While algorithms for computing the Fresnel integrals appear
to be somewhat faster than using the Boys function in (5) (see, e.g.,
Ref. 21), we note that the generalized Fresnel integrals, e.g., ∫

x
0 eitn

dt,
n ≥ 2, can be evaluated using our approach and plan to consider
algorithms for these oscillatory special functions elsewhere.

III. APPROXIMATION OF F(nmax, z) FOR REAL
AND COMPLEX ARGUMENTS

The function
gn(s) = (1 − s)n−1/2 (21)

decays monotonically on [0, 1], and we use Algorithm 1 in Ref. 22
to construct its near optimal approximation via exponentials. We
refer to Ref. 22 and references therein for the details of the algorithm
that we use to obtain the necessary parameters (for an example, see
Table II).

We obtain approximation

∣gn(s) −
M

∑

m=1
wmeηms

∣ ≤ ε for s ∈ [0, 1], (22)

where wm, ηm ∈ C. We note that n should be sufficiently large (e.g.,
n ≥ 7) to avoid the impact on the approximation of the singularity
of the nth derivative of gn. Its numerical effect makes the accu-
racy of the current double precision implementation of Algorithm
1 in Ref. 22 insufficient to reliably produce approximation (22) for
1 ≤ n ≤ 6.

Substituting the approximation of gn(1 − s) into the integral
(1), we arrive at

F(n, z) −
1
2

M

∑

m=1
wm∫

1

0
e−zseηm(1−s)ds

=
1
2∫

1

0
e−zs
(sn−1/2

−

M

∑

m=1
wmeηm(1−s)

)ds

and estimate

∣F(n, z) −
1
2

M

∑

m=1
wm∫

1

0
e−zseηm(1−s)ds∣ ≤

ε
2∫

1

0
e−ℛe(z)sds

=
ε
2

1 − e−ℛe(z)

ℛe(z)
.

Since

1
2

M

∑

m=1
wm∫

1

0
e−zseηm(1−s)ds =

1
2

M

∑

m=1
wmeηm 1 − e−(z+ηm)

z + ηm
,

TABLE II. Weights and exponents of the approximation of g12(s) on [0, 1] in (22). With these parameters, the absolute error in (23) is ε ≈ 2.5 ⋅ 10−13.

m ηm wm

1 0.707 194 313 205 700 10 ⋅ 101
+ 0.164 872 912 507 521 15 ⋅ 102i 0.364 436 324 028 985 01 ⋅ 10−10

+ 0.264 117 510 721 075 04 ⋅ 10−10i
2 0.707 194 313 205 700 10 ⋅ 101

− 0.164 872 912 507 521 15 ⋅ 102i 0.364 436 324 028 985 01 ⋅ 10−10
− 0.264 117 510 721 075 04 ⋅ 10−10i

3 −0.571 432 717 151 916 35 + 0.132 785 794 532 336 33 ⋅ 102i 0.181 852 503 467 536 33 ⋅ 10−6
− 0.218 604 589 713 993 52 ⋅ 10−5i

4 −0.571 432 717 151 916 35 − 0.132 785 794 532 336 33 ⋅ 102i 0.181 852 503 467 536 33 ⋅ 10−6
+ 0.218 604 589 713 993 52 ⋅ 10−5i

5 −0.471 930 213 303 925 06 ⋅ 101
+ 0.998 352 571 123 710 32 ⋅ 101i −0.994 891 692 720 557 48 ⋅ 10−3

− 0.230 490 791 052 030 73 ⋅ 10−3i
6 −0.471 930 213 303 925 06 ⋅ 101

− 0.998 352 571 123 710 32 ⋅ 101i −0.994 891 692 720 557 48 ⋅ 10−3
+ 0.230 490 791 052 030 73 ⋅ 10−3i

7 −0.717 046 627 728 950 89 ⋅ 101
+ 0.667 123 608 398 207 68 ⋅ 101i −0.256 252 169 858 790 06 ⋅ 10−1

+ 0.358 183 352 748 769 82 ⋅ 10−1i
8 −0.717 046 627 728 950 89 ⋅ 101

− 0.667 123 608 398 207 68 ⋅ 101i −0.256 252 169 858 790 06 ⋅ 10−1
− 0.358 183 352 748 769 82 ⋅ 10−1i

9 −0.848 997 470 547 246 99 ⋅ 101
+ 0.334 348 041 684 674 91 ⋅ 101i 0.165 068 015 448 807 23 + 0.322 739 644 717 760 45i

10 −0.848 997 470 547 246 99 ⋅ 101
− 0.334 348 041 684 674 91 ⋅ 101i 0.165 068 015 448 807 23 − 0.32 273 964 471 776 045i

11 0.365 644 143 631 509 73 ⋅ 102
−0.201 046 416 615 651 64 ⋅ 10−25

12 −0.324 242 392 559 219 54 ⋅ 101
−0.395 635 369 550 420 78 ⋅ 10−3

13 −0.890 660 477 331 007 53 ⋅ 101 0.723 499 458 050 852 92
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FIG. 1. The function g12(s) in (21) and the error of its near optimal approximation via exponentials in (22) with parameters described in Table II.

we have

∣F(n, z) −
1
2

M

∑

m=1
wmeηm 1 − e−(z+ηm)

z + ηm
∣ ≤

ε
2

1 − e−ℛe(z)

ℛe(z)
≤

ε
2

. (23)

Indeed, denoting the factor on the right-hand side of (23),
q(z) = (1 − e−z

)/z, we have

q(2z) =
1
2
(e−zq(z) + q(z)),

and therefore, for ℛe(z) ≥ 0,

∣q(2z)∣ ≤ ∣q(z)∣.

This implies that ∣q(z)∣ reaches it maximum at z = 0, where q(0) = 1.
If ℛe(z) < 0, we compute ezF(0, z) instead of F(0, z),

ezF(n, z) =
1
2∫

1

0
ez(1−s)sn−1/2ds =

1
2∫

1

0
ezs
(1 − s)n−1/2ds.

Using (22), we obtain

ezF(n, z) −
1
2

M

∑

m=1
wm∫

1

0
ezseηmsds =

1
2∫

1

0
ezs
[gn(s) −

M

∑

m=1
wmeηms

]ds

and the estimate

∣ezF(n, z) −
1
2

M

∑

m=1
wm

ez+ηm
− 1

z + ηm
∣ ≤

ε
2

eℛe(z)
− 1

ℛe(z)
≤

ε
2

.

For computing values of ezF(n, z) for 0 ≤ n ≤ nmax for ℛe(z) < 0,
we use recursions

ezF(n, z) =
n − 1/2

z
ezF(n − 1, z) −

1
2z

(24)

instead of (2) and

ezF(n − 1, z) =
2x

2n − 1
ezF(n, z) +

1
2n − 1

(25)

instead of (3).

IV. IMPLEMENTATION DETAILS
The speed of computation of values of F(nmax, z) for nmax ≥ 7

depends on the number of terms M in approximation (22). We
demonstrate the results of approximating F(12, z) and display func-
tion g12(s) in Fig. 1. Using only 13 terms (see Table II), we achieve
accuracy for F(12, z) ε ≈ 2 ⋅ 10−14 [e.g., accuracy of evaluation of
F(12, 0) is 2.08 ⋅ 10−14].

In implementing this approximation, we need to isolate cases
where z is close to −ηm by using the Taylor expansion for 1−e−(z+ηm)

z+ηm
.

Since most of ηm have an imaginary part, it is a minimal effort if z is
real since ηm is real in only three terms in our example in Table II.
In addition, for the real argument z, we need to use only five terms
with complex valued parameters as they come in complex conjugate
pairs.

We implemented these algorithms using Fortran 90 on a lap-
top described in Sec. II. Computing the Boys functions F(n, z)
for n = 0, . . . , 12 for the real argument takes ≈0.34 ⋅ 10−7 s. The
subroutine for the complex valued argument is slower and takes
≈0.21 ⋅ 10−6 s.

V. CONCLUSION
Since their introduction in Ref. 1, the Boys functions with a

real argument have widely been used for computing Gaussian inte-
grals. When using mixed Gaussian/exponential bases, one needs to
evaluate the Boys functions with complex argument. Such mixed
bases are appropriate for scattering problems and for bound state
problems where using only plane waves becomes too expensive near
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singularities. Consequently, mixed Gaussian/exponential bases pro-
vide a greater flexibility in formulation and solving problems of
quantum chemistry, and we present our results, in part, to facilitate
their use.

While for a real argument the Boys functions can be easily
tabulated in regions where their asymptotic is not accurate, it is
more difficult to apply such a straightforward implementation for
a complex argument. A careful reading of Refs. 3, 4, and 8 reveals
shortcomings of the existing approaches (relying mostly on expan-
sions) to computing the Boys functions of a complex argument (see,
e.g., conclusion in Ref. 8). For our approach, a better comparison
is offered by Gautschi’s algorithm20 for the error function of com-
plex argument since it is related to F(0, z), as in (4); see Sec. II.
Our approach of approximating a part of the integrand so that the
resulting integral can be evaluated explicitly is simpler and yields
tight accuracy estimates. Note that the part of the integrand we are
approximating is real, while the Boys functions we are computing are
complex valued. As a side remark, we note that the Boys function
F(0, z) remains bounded for a complex argument with ℛe(z) ≥ 0
[and ezF(0, z) for ℛe(z) < 0] and, for this reason, provides a good
alternative approach for computing the error function of a complex
argument.

We avoid the direct timing comparisons with existing algo-
rithms since such comparisons are generally misleading. Given dif-
ferent hardware (single core, multi-core, GPU, etc.), different com-
pilers and compiler flags, and different implementations, it is hard to
compare algorithms by simply running them. Instead, one can look
at algorithmic possibilities an approach offers. Our code is compact,
and it is easy to simply count the total number of operations. We
note that computation of each term in sums (12) and (23) is triv-
ially parallel and only recursions in (2) and (3) require a sequential
implementation (with just three multiplications and one addition
per function). Thus, timing of our algorithms implemented on a
multi-core or GPU computer will be much faster than the quoted
timings of our implementation on a single central processing unit
(CPU).

SUPPLEMENTARY MATERIAL

See the supplementary material for five Fortran 90 subroutines
implementing, as an example, algorithms for computing the Boys
function with indices n = 0, . . . , 12. The subroutine dboysfun12.f90
evaluates the Boys functions F(n, z) for real non-negative argument
z. The subroutines zboysfun12.f90 and zboysfun00.f90 evaluate the
Boys functions F(n, z) for complex argument z with a non-negative
real part. Finally, the subroutines zboysfun00nrp.f90 and zboys-
fun12nrp.f90 evaluate the functions ezF(n, z) for complex argument
z with a negative real part.
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APPENDIX: CONSTRUCTION OF QUADRATURE IN (11)

Changing variables in (7) t = eτ/2, we rewrite it as

s−1/2
=

1
√

π∫
∞

−∞

e−seτ
+τ/2dτ, 0 ≤ s ≤ 1, (A1)

and discretize it (following Ref. 23), yielding

∣s−1/2
−

M

∑

m=1
wme−ηms

∣ ≤ εs−1/2, δ ≤ s ≤ 1, (A2)

where ηm, wm > 0 are arranged in an ascending order, and we
estimate that

∣F(0, z) −
1
2∫

1

0
e−zs
(

M

∑

m=1
wme−ηms

)ds∣

≤
1
2∫

1

0
e−ℛe(z)s

∣s−1/2
−

M

∑

m=1
wme−ηms

∣ds

≤
ε
2∫

1

0
e−zℛe(z)s−1/2ds

= εF(0,ℛe(z)) ≤ ε.

Using δ = ε = 10−13 in (A2) results in approximation with M = 210.
We also need this approximation to satisfy

∣
1

2
√

π∫
∞

−∞

1
eτ
+ z

eτ/2dτ −
M

∑

m=1

wm

ηm + z
∣

= ∣
1
2

√π
z
−

M

∑

m=1

wm

ηm + z
∣ ≤ ε, ∣z∣ ≥ r0, (A3)

in order to obtain

∣F(0, z) − (
1
2

√π
z
−

e−z

2
√

π

M

∑

m=1

wme−ηm

ηm + z
)∣ ≤ 2ε. (A4)

The exponents and the weights in (A2) grow as ηm ≈ eτm and wm

≈ eτm/2 (see Ref. 23) so that in (A4), it is sufficient to use a subset
of terms with ηm ≤ eτmax . Selecting τmax = 7/2 so that tmax = eτmax/2

in (10), the error ϵtmax ≈ 5.9 ⋅ 10−18. Consequently, we only need
the 22 terms displayed in Table I and obtain the approximation of
(8) in (12).

REFERENCES
1S. F. Boys, “Electronic wave functions-I. A general method of calculation for the
stationary states of any molecular system,” Proc. R. Soc. London, Ser. A 200(1063),
542–554 (1950).
2O. Matsuoka, “Field and field gradient integrals based on Gaussian type orbitals,”
Comput. Phys. Commun. 3(2), 130–135 (1972).
3J. A. C. Weideman, “Computation of the complex error function,” SIAM J.
Numer. Anal. 31(5), 1497–1518 (1994).

J. Chem. Phys. 155, 174117 (2021); doi: 10.1063/5.0062444 155, 174117-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0062444
https://www.scitation.org/doi/suppl/10.1063/5.0062444
https://doi.org/10.1098/rspa.1950.0036
https://doi.org/10.1016/0010-4655(72)90060-4
https://doi.org/10.1137/0731077
https://doi.org/10.1137/0731077


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

4P. Cársky and M. Polávsek, “Incomplete Gamma Fm(x) functions for real
negative and complex arguments,” J. Comput. Phys. 143(1), 259–265 (1998).
5M. Peels and G. Knizia, “Fast evaluation of two-center integrals over Gaus-
sian charge distributions and Gaussian orbitals with general interaction kernels,”
J. Chem. Theory Comput. 16(4), 2570–2583 (2020).
6M. Polávsek and P. Cársky, “Efficient evaluation of the matrix elements of the
Coulomb potential between plane waves and Gaussians,” J. Comput. Phys. 181(1),
1–8 (2002).
7B. A. Mamedov, “On the evaluation of Boys functions using downward recursion
relation,” J. Math. Chem. 36(3), 301–306 (2004).
8R. J. Mathar, “Numerical representations of the incomplete gamma function of
complex-valued argument,” Numer. Algorithms 36(3), 247–264 (2004).
9A. K. H. Weiss and C. Ochsenfeld, “A rigorous and optimized strategy for the
evaluation of the Boys function kernel in molecular electronic structure theory,”
J. Comput. Chem. 36(18), 1390–1398 (2015).
10G. Mazur, M. Makowski, and R. Łazarski, “Boys function evaluation on graphi-
cal processing units,” J. Math. Chem. 54(10), 2022–2047 (2016).
11G. Beylkin and L. Monzón, “Efficient representation and accurate evaluation of
oscillatory integrals and functions,” Discrete Contin. Dyn. Syst. 36(8), 4077–4100
(2016).
12T. N. Rescigno, C. W. McCurdy, Jr., and V. McKoy, “Low-energy e−-H2
elastic cross sections using discrete basis functions,” Phys. Rev. A 11(3), 825
(1975).
13N. S. Ostlund, “Polyatomic scattering integrals with Gaussian orbitals,” Chem.
Phys. Lett. 34(3), 419–422 (1975).

14R. Colle, A. Fortunelli, and S. Simonucci, “A mixed basis set of plane waves
and Hermite Gaussian functions. Analytic expressions of prototype integrals,”
Nuovo Cimento D 9(8), 969–977 (1987).
15R. Colle, A. Fortunelli, and S. Simonucci, “Hermite Gaussian functions mod-
ulated by plane waves: A general basis set for bound and continuum states,”
Nuovo Cimento D 10(7), 805–818 (1988).
16L. Füsti-Molnar and P. Pulay, “Accurate molecular integrals and energies using
combined plane wave and Gaussian basis sets in molecular electronic structure
theory,” J. Chem. Phys. 116(18), 7795–7805 (2002).
17W. P. Reinhardt, “Complex coordinates in the theory of atomic and molecular
structure and dynamics,” Annu. Rev. Phys. Chem. 33, 223 (1982).
18K. Wolinski, J. F. Hinton, and P. Pulay, “Efficient implementation of the gauge-
independent atomic orbital method for NMR chemical shift calculations,” J. Am.
Chem. Soc. 112(23), 8251–8260 (1990).
19D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software (Prentice-
Hall, Inc., 1989).
20W. Gautschi, “Efficient computation of the complex error function,” SIAM J.
Numer. Anal. 7(1), 187–198 (1970).
21J. Boersma, “Computation of Fresnel integrals,” Math. Comput. 14(69-72), 380
(1960).
22G. Beylkin, L. Monzón, and I. Satkauskas, “On computing distributions of prod-
ucts of non-negative independent random variables,” Appl. Comput. Harmon
Anal. 46(2), 400–416 (2018); arXiv:1707.07762.
23G. Beylkin and L. Monzón, “Approximation of functions by exponential sums
revisited,” Appl. Comput. Harmon Anal. 28(2), 131–149 (2010).

J. Chem. Phys. 155, 174117 (2021); doi: 10.1063/5.0062444 155, 174117-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1006/jcph.1998.5975
https://doi.org/10.1021/acs.jctc.9b01296
https://doi.org/10.1006/jcph.2002.7124
https://doi.org/10.1023/b:jomc.0000044226.49921.f5
https://doi.org/10.1023/b:numa.0000040063.91709.58
https://doi.org/10.1002/jcc.23935
https://doi.org/10.1007/s10910-016-0668-x
https://doi.org/10.3934/dcds.2016.36.4077
https://doi.org/10.1103/physreva.11.825
https://doi.org/10.1016/0009-2614(75)85528-x
https://doi.org/10.1016/0009-2614(75)85528-x
https://doi.org/10.1007/bf02464849
https://doi.org/10.1007/bf02450141
https://doi.org/10.1063/1.1467901
https://doi.org/10.1146/annurev.pc.33.100182.001255
https://doi.org/10.1021/ja00179a005
https://doi.org/10.1021/ja00179a005
https://doi.org/10.1137/0707012
https://doi.org/10.1137/0707012
https://doi.org/10.1090/s0025-5718-1960-0121973-3
https://doi.org/10.1016/j.acha.2018.01.002
https://doi.org/10.1016/j.acha.2018.01.002
http://arxiv.org/abs/1707.07762
https://doi.org/10.1016/j.acha.2009.08.011

