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ABSTRACT

This paper presents a systematic approach to the description of spatial resolution of seismic
experiments and migration (or inversion) algorithms.

We give a brief description of the linearized seismic inverse problem and its solution by
migration and inversion algorithms. To consider the spatial resolution at a given point in the
medium, we define the domain of coverage in the space of spatial frequencies. This region
determines the spatial resolution and is shown to depend on (i) the total domain of integration,
which in turn depends on the configuration of sources and receivers and on the frequency band of
the signal, and (ii) the mapping of this domain into the spatial frequency domain. This mapping is
determined by the background model and can be obtained numerically by ray tracing. Together (i)
and (ii} allow us to estimate the limits of spatial resolution at each point in the medium given the
configuration of experiment and the background mddel.

As important examples, we illustrate our approach by considering the spatial resolution of
surface seismics and VSP.

INTRODUCTION

Information obtained in seismic experiments is usually finalized in pictures of subsurface
structures, a process that is commonly called migration. The question "What do we see in these
pictures?" has not been answered fully so far. It is usually understood that what we see is an image
of the subsurface, more exactly, an image of surfaces of discontinuities of the elastic parameters of
the medium. For exampie, various migration algorithms for seismic -imaging have been derived
over the years by considering such discontinuities as secondary sources !~13, Recently, a connection
between seismic imaging and generalized Radon transform was made '°. This result together with
the inversion of the generalized Radon transform !4!5 allows to formalize the intuitive point of
view that discontinuities are reconstructed via migration algorithms 6.

However, more questions arise. How does the limited aperture of seismic experiments affect
the image? How do the initial assumptions of the subsurface structures affect the image? What
difference does it make to perform just surface seismic experiments, or just VSP, or both? What
would be the configuration of an ideal experiment (though we might not be able to perform it)?
All these questions are of crucial importance, since their answers explain what we see in depth
sections. All of these questions can, in fact, be formulated as one; namely, what is the spatial
resolution of a seismic experiment and migration (or inversion) algorithms and how does it depend
on the configuration of the experiment, the reconstruction algorithm and the initial assumptions
about the medium?
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So far only partial answers are available (see Devaney !7 for example). This paper presents a
systematic way of describing the spatial resolution of seismic experiments; that is we give a simpie
method of estimating the spatial resolution given the configuration of the seismic experiment and
the background model. We illustrate our approach by considering limits on spatial resoiution of
surface seismics and VSP.

1. AMATHEMATICAL FORMULATION OF THE PROBLEM

The problem of nondestructive evaluation in general and of seismic exploration in particular is
that of finding parameters of the medium in some region given observations of scattered wave
fields on the boundary of that region. Incident wave fields are generated by "point sources" located
usually on the boundary of the region. We ignore directional characteristics of real sources in this
paper and use 8-function to represent a point source.

The propagation of waves is presumed to be governed by a linear partial differential equation.
The specific equation and its coefficients depend on the medium. Here, we consider the simplest
equations - the wave equation and the corresponding Helmholtz equation. In this case the medium
is described by just one function - index of refraction - which we want to find given a scattered
wave field. Similar considerations apply to the elastic equations: however, we restrict ourselves here
to the Helmholtz equation for the sake of simplicity.

To formalize what has been said so far, we denote the region of interest by X, its boundary by
aX | points inside the region X by x, points on the boundary by £ and 1. Let 5 denote the source
positions and £ the receiver positions. Let the region X be three-dimensional (however, the
specific dimension of X is not essential in our approach, and enters only as a parameter). We
assume that we are given the function u (t ,£,m) - the scattered field - as a function of time t,
source position n, and receiver position £. For fixed n and £ the function u (t,£,9) is a single
seismic trace. We assume that the scattered field is causal

u(t,én) =0, for <0 ,

and, thereby, real and imaginary parts of

+o0

2k gm) = [ ulgmear . (LD

—oo

satisfy dispersion relations in the frequency domain.

Unfortunately, in seismics neither € nor n can be assumed to vary along all of the boundary
34X . This imposes an important limitation on the spatial resolution. Therefore, we always assume a
limited aperture for an experiment and denote parts of the boundary where sources and receivers
are located by 0X; and 9X,,. , respectively.

Suppose the index of refraction in the region X is of the form

nix) =né¢ (x)+f(x), (1.2)

where ny{x) is known and is usually called the background model. The problem is to characterize
the real function f (x) using observations of the scattered field on the boundary X of the region
X. If the propagation is governed by the Helmholtz equation, then the scattered field 4 (k ,£,9)
satisfies the following integral equation

2k £,m) = —k? [ G (k,£)f (Wi (k 1 ), (1.3)
X

where G is the Green’s function of the background model and v, is the sum of the incident and
scattered fields Vs = Vi, + v. The Green’s function G is the solution of the equation

(V2+ k)G (k gx) =8(x—¢),

and, in principle, can be computed given the background model.

We linearize the problem by using instead of (1.3)
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1k £,m) =—k2.{G(k,§,X)f (e ), (ki x )ax . (1.4)

This approximation (the so-called distorted wave Born approximation) is usually satisfactory for the
singly scattered field. In any case. it can be made arbitrarily accurate by taking the perturbation f
to be small enough. We view (1.4) as an equation for the function f. This is an integral equation
of the first kind with an oscillatory kernel. Migration and inversion methods provide approximate
solutions of this equation.

We assume that the incident field v,, is that of a point source at the point n on the boundary
8X; and that the source position is fixed. Since (1.4) is a linear integral equation, its solution -
which we denote by f,,, (x) - can be written as

feut (€) = 2 Re xf S5t kgm0 k£ m)d gk (1.5)
[:} [4

rec

with some kernel M, where M (k £mx) =M (~k £7nx) and Re denotes the real part of the
expression. Equation (1.5) can be rewritten as

fﬂ,(x)=l[fM(t,g,n(v)u(t,g,n)dgdt‘ (1.6)
;)

0

rec

using the following relation between two arbitrary real functions g, # and their Fourier transforms

gﬂh

+ea +oo
Jewn@ a =L JEwE &) ak . (1.7)
“ 27 Y
Here,
M(.gmx)=2Re [ Mk &mxledk (1.8)
0
and
. 1 +o0
Mk gmx) = 5= :[QM(I,f,n.X)e""dr. (1.9)

This paper describes a few possible constructions for the kernel M (k Emx) or Mt gqx).
However, our main concern is to explain to what extent can we recover the function f (x). In
other words, what is the relation between f (x) and f,, (x).

If the source position is not fixed, then in addition to integrating over all frequencies and
receiver positions in (1.5) we can integrate over all source positions along dX, because of the
reciprocity between sources and receivers.

We will call the domain of integration {0,001%8X,,c ( or [0,00}x8X,,. x3X, if we have muitiple
source positions) in (1.5) the fotal domain of integration. In practice, it is always a bounded
domain. It is bounded because of limited apertures and bandlimited signals. It is this domain that
determines the spatial resolution of reconstructions and the description of "how" is the subject of
this paper.

2. ALGORITHMS OF RECONSTRUCTION: MIGRATIONS AND INVERSIONS

Traditionally, an imaging procedure which recovers locations of surfaces of discontinuities was
given the name migration, while algorithms aimed to recover the velocity (in our case the function
/) were called inversions. Recently developed algorithms !¢ recover not only the location but also
the jump at the discontinuity '°. Moreover, as can be seen from the example '8, the velocity itself
can be recovered in certain situations, since the error appears to be not only smooth, but also smail.
Thus, the distinction between migrations and inversions becomes blurred.

In any case, a description of a reconstruction algorithm is the description of the kernel

M@.gmx) in (1.6) or Mk gqx) in (1.5). An explicit form of the kernel M@ gnx) was
suggested 6,
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M@ gnx)= —3117 80t — o™ (x £) — ¢ (x 1)) 1 S hixem), Q1)

A% (x ,f)A"' x )
or, as it follows from (1.9),

1 e~k (6% (x.£) + ¢ (x m))
16w A% (x £)A" (x,n)

Here the phase functions ¢* (x £), " (x,) and the amplitudes 4°* (x £}, A" (x 1) come from
the ray approximation to the Green’s functions, namely

Guul (k ,6{‘) [—Y (x ,f)e‘k'ta"’(x‘f) ,

Mk ¢mx) = h(x.£m). 2.2)

and
Gin (k ’n#) = __Ain (X,'q)e'kd’a"'(x.n) .
The phase functions ¢” (x ,n) and ¢°* (x ,£) satisfy the eikonal equations
(Vo™ x ) =ng (x),
and

(V™ (x ,£))2 = ng (x) .
¢" (x,n) is the travel time in the background model from the source located at the point n to the
point of reconstruction x inside the region X, and ¢°* (x ) is the travel time in the background
model from the point of reconstruction x to the receiver located at the point £.
Amplitudes 4™ and 4°* satisfy the transport equations
A" (x ) V" (x,m) + 2V, A" (x )V, ¢" (x ) =0,
and
A% (x £) VI (x &) + 2V, A% (x ,£)V, ¢ (x £) = 0,
along the rays connecting the source location 7 on the boundary 8X; with the point x inside the
region X, and the point x with the receiver location £ on the boundary 8X,.. , respectively.
The function & (x ,£,m) is the Jacobian of a map we will discuss later in the paper. It is easy to
compute A (provided we can trace rays in the background model) from the foliowing identity
hixgn)dé¢=ngd (1 +cosy) dw, (2.3)
where
V™ (x £} Vg™ (x n)
né (x) '

cos ylx, &) = (2.4)
Y (x,£,m) is the angle between the two rays traced from the source and from the receiver to the
point x; dw is the standard solid angle measure on the unit sphere. Relation (2.3) describes the
rate of change at the point x of the direction of the ray connecting point X with the receiver with
respect to the receiver position on the boundary 98X .

The kernel in (2.1) or (2.2) solves the problem of migration for the case of variable
background velocity and arbitrary configuration of sources and receivers. The derivation of (2.1) is
based on the connection between seismic imaging and generalized Radon transform ' and the
inversion of the Generalized Radon Transform '“!*. A formal derivation of (2.1) is presented in
Ref.16 and a heuristic approach connected with (2.1) in Refs.10,18. Since the reconstruction with
this kernel is up to a smooth error, we can replace propagators in (2.1) and (2.2) by any
propagators which have the same high frequency asymptotics. Therefore, we can use exact Green’s
functions and obtain

- 1 Gkex) Glkmx)
Mk £, = — - h(x, 7). 2.5
o 167 |G (k&) |G (kmx)? Gk @3

ahd
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+oo
M(t,f,nx)=—?jr—2 J G t—r£x) G" (rpx)dr hix £m) (2.6)

where

+oo
Gaul (t,ffY) =2 RCI—G(—k_’i&‘ e—:kl dk

N 2.7)
o |G (k& ) (

and

: B Glmx) -
G"(t mx)=2Re | LENXL ook i (2.8)
m e{IG ko)

(2.5) and (2.6) represent another choice of kernels to perform migration.

There are two different physical interpretations of the algorithms depending on the order of
integration in (1.5) or (1.6).

i.Integrating over time (or frequency) first, over the receiver positions second.

We illustrate this case using (2.1). Substituting (2.1) into (1.6) we obtain

1
(=" (x m)+6% (x .£) A% (x ,£)A" (x 1m)

fo ) = ——L= J"("f”’) hicgm)de,  (2.9)

2
87 3

rec

Here, let us give the following interpretation.

For a given point x (the point of reconstruction), we want to check if there is a reflector at that point. To
accomplish this, we go to our data u(t.£m) and integrate along the time-distance curve
1=¢" (x )+¢*“ (x ,¢) dictated by the background model. If there were a reflector at the point x then
along this curve the data are affected to the greatest extent. The weighting in (2.9) is chosen so thar we
obtain the jump of the function f at the point x as a result of such an integration.

ii.Integrating over boundary first, over time (or frequency) second.

We obtain using (2.2)

S ) = ——h Re [T [ e ke de k. (2.10)
X ) = — € X, E,miu K&, . .
est 1673 y A" (x‘n) 84‘{, A% (x £) £ ém)dg

Using (2.5) we can write still another formula for f., (x),

1 T _Gkmx) G (k £x) ;
est == R * h Wy k, y d¢ dk . (2.11)
S &) = = Re L (G e P a,f G (kg op " &M K Em) d

Using (1.7) the corresponding integral in time domain can be written as follows

1 T in
Son ) = =25 !G (t )W @ ) dr | 2.12)

where

witnx)= f Xf G™ (r—t £x) h xEnulrém)deédr
0 a rec
Here, we would like to point out the difference in interpretation of (2.9) compared with (2.12).
Approach in (2.12) is within the spirit of Claerbout’s "full wave" equation migration. However,

the propagators we use here differ from those used by Claerbout 3. This approach can be
interpreted as follows.

Taking the scattered field along 8X (part of the boundary with receivers) we backpropagate this field

inside the region X to the point x. We also propagate the incident wave to the point x and then form an
integral over time.
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It is clear now that (i) and (ii) carry different heuristics. We note, however, that despite the
difference in interpretation, the total domain of integration remain the same in both cases. This domain
of integration was shown !¢ to be directly related to the region of coverage in the space of spatial
frequences. We discuss it in greater detail in the following section.

3. REGIONS OF COVERAGE IN THE DOMAIN OF SPATIAL FREQUENCIES

Given a function f (x) it can be presented as
1 —ip-
Ye~"*dp 3.1
)} f f © ’
where / () is the Fourier transform of the function f ,

Foy=f 5 x)erax.

Suppose we restrict the integration in (3.1) to a bounded region D., which we call the region of
coverage at the point x in the domain of spatial frequences . We have

1 7 —ipx

o) fD‘f(p)e ap (3.2)
where /. is an estimated value of the function f at the point x. The important feature of this
definition of the region of coverage D, is that we allow the shape of this region to depend on the
point of reconstruction x. For real functions f the region of coverage D, is symmetric with respect
to the origin, since in this case f (o)=F (=p) and, therefore, with every point p the region D,
contains aiso point —p .

Sx)=

Sest () =

It was shown !¢ that the reconstructed function f,y () in algorithms in (2.1) and (2.2) is the
same one (up to a smooth error, see Figure 1 for an illustration) as in (3.2) provided we describe
the region of coverage D.. The description of D, is, in fact, the estimate of spatial resolution. For a
given point x in the medium this description in the ray approximation is given by the following
mapping

p =k V(@™ (x £+ ")), (3.3

where p is a vector in the space of spatial frequences, k is the wave number, £ is the receiver
position and 7 is the source position and x is the point of reconstruction. The transform in (3.3)
maps

[signal frequency band}x§X,,. x8X, — lspace of spatial frequencies] .

It maps space of 2n—1 dimensions into space of # dimensions, where in our case n=3. Therefore,

we can have a multiple coverage of some parts of D.. As a general rule, this multiple coverage is
used (explicitly or implicitly) for averaging which improves the signal to noise ratio.

This mapping was investigated oniy with simplifying assumptions. The simplifying
assumption '® is that the Jacobian (the function 4 (x .£,) in (2.3)) of this mapping for a fixed
source position is positive. In this case

dp =k h(y tm)dedk |

where /1 is the same as in (2.3) and the mapping (3.3) can be viewed as a change of variables of
integration from & ,£ to p. Physically this simplifying assumption means that if a source located at
an interior point of X illuminates a region 8X... on the boundary, then this region can be smoothly
contracted along the rays into a part of a small sphere around the source. This condition is always
satisfied in the case of a constant background.

The mapping (3.3) is of a fundamental importance with respect to inversion algorithms. It
shows how the total domain of integration (k.£,n) on which our data are defined is related to
region of coverage in the domain of spatial frequences.

To summarize, the spatial resolution at a given point x defined by the region D, depends on
i) the total domain of integration, which is determined by the configuration of sources and receivers

and the frequency band of the signal, and
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ii) the mapping (3.3) of this domain into the domain of spatial frequencies, which is determined by
the background model and can be obtained numerically by ray tracing. This mapping is different for
each point of reconstruction.

Together (i) and (ii) determine the limits on spatial resolution at each point of reconstruction given
the configuration of experiment and the background model.

4. EXAMPLES

We start with Figure | which describes what we mean by “smooth error" in reconstructions by
migration algorithms. In certain important situations '3, error itself can be small as weil.

Figure 2 shows how a box in the total domain of integration is transformed under the mapping
(3.3) in the case of a constant background and source-receiver configuration shown in the picture.
The source position is fixed and point of reconstruction is the origin. We note that algorithms in
(2.1-2.2) and (2.5-2.6) are derived under assumptions of unlimited bandwidth and Figure 2 also
illustrates the effect of bandlimiting on the shape of the region of coverage in the domain of spatial
frequences. This shape affects the reconstruction and the question how to incorporate the
bandlimited nature of the observations to reduce such influence is still unresoived.

We now concentrate on the effects of limited aperture of the experiments. Figure 3 shows a
simple single source surface configuration and illustrates the limits imposed on the region of
coverage by a limited aperture. These regions are different for different points. In the case of
multiple sources certain spatial frequences are covered several times as illustrated in Figure 4. This
forms the basis for the CDP method. Indeed, in the case of horizontally layered structures, data
corresponding to a common depth point carry information about the p, component in the domain
of spatial frequences.

Figure 5 illustrates the limits imposed on the region of coverage by a limited aperture in an
offset VSP. Note that different spatial frequences can be recovered compared to the surface seismics
experiments.

Figures 6-12 are adopted from Ref.18; we have added pictures of the regions of coverage in the
domain of spatial frequences. Figure 6 shows the configuration of a coincident source-receiver
experiment and the data. The scatterers form the shape of the letter "S" in the object area and
Figure 7 shows the reconstruction. Note that the coverage of spatial frequences is spherically
symmetric and complete. The size of the reconstructed point scatterers depends only on the
bandwidth of the signal.

Tf(xx

|

Jo+ e -

Figure 1. Adding a smooth function changes neither the location nor the size of a jump discontinuity.
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Isignal frequency band1xdX,,. — Ispace of spatial frequencies}

Figure 2. Transformation of a box in the total domain of integration under the mapping in (3.3) in the
case of a constant background and source-receiver configuration shown in the top picture.
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Figure 3. Single source surface seismics configuration. Regions of coverage in the space of spatial
frequencies for different points.
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Figure 4. Multiple coverage in the domain of spatial frequencies for a multiple-source configuration.
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Figure 5. Single source offset VSP configuration. Regions of coverage in the space of spatial fre-
quencies for different points.
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Figure 6. Coincident source-receiver configuration and computer simulated wave field generated by 18
point scatterers of equal strength placed in the medium with constant index of refraction.
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Figure 7. Result of reconstruction using source-receiver configuration and the data shown in Figure 6.
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Figure 8. Single source configuration and computer simulated wave field generated by 18 point scat-
terers of equal strength placed in the medium with constant index of refraction.
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Figure 9. Result of reconstruction and regions of coverage in the space of spatial frequencies for dif-
ferent points. Receivers are located along line B.




Figure 10. Result of reconstruction and regions of coverage in the space of spatial frequencies for
different points. Receivers are located along line A.
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Figure 11. Result of reconstruction and regions of coverage in the space of spatial frequencies for dif-
ferent points. Receivers are located along lines AB.
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Figure 12. Result of reconstruction and regions of coverage in the space of spatial frequencies for dif-
ferent points. Receivers are located along lines ABC.

Figure 8 shows the configuration of a single source experiment and the data. Figure 9 shows
the reconstruction using data collected on the surface. Pictures on the right illustrate limits on the
region of coverage caused by a limited aperture at different points. Note poor resolution in the
horizontal direction ( p, component). Figure 10 shows the reconstruction and limits on regions of
coverage in the offset VSP type of experiment. Note the difference in coverage between Figure 9
and 10 and the effects on the image. Figure 11 shows the reconstruction in combined surface-
seismics-VSP experiment. The effects of a limited aperture are present, but one can also see the
influence of the bandlimited signal on resolution in different directions (see Figure 2). Figure 12
shows the reconstruction using all the data in the experiment of Figure 8. Here limited aperture
effects are minimal. Despite a noticeable influence of the bandlimited signal on resolution in
different directions, the reconstruction is almost perfect.
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