An Introduction to Bayesian Linear Regression

APPM 5720: Bayesian Computation

Fall 2018

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
00000	00000	0000000	000000

Suppose that we observe

• explanatory variables x_1, x_2, \ldots, x_n

and

• dependent variables y_1, y_2, \ldots, y_n

Assume they are related through the very simple linear model

$$y_i = \beta x_i + \varepsilon_i$$

for i = 1, 2, ..., n, with $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ being realizations of iid $N(0, \sigma^2)$ random variables.

< □ ト < 団 ト < 三 ト < 三 ト < 三 ・ つへぐ</p>

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
00000	00000	000000	000000

$$y_i = \beta x_i + \varepsilon_i, \qquad i = 1, 2, \dots, n$$

- ► The x_i can either be constants or realizations of random variables.
- In the latter case, assume that they have joint $pdf f(\vec{x}|\theta)$ where θ is a parameter (or vector of parameters) that is unrelated to β and σ^2 .

The likelihood for this model is

$$\begin{aligned} f(\vec{y}, \vec{x} | \beta, \sigma^2, \theta) &= f(\vec{y} | \vec{x}, \beta, \sigma^2, \theta) \cdot f(\vec{x} | \beta, \sigma^2, \theta) \\ &= f(\vec{y} | \vec{x}, \beta, \sigma^2) \cdot f(\vec{x} | \theta) \end{aligned}$$

- ロト - (日) - (1)

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	0000000	000000

- Assume that the x_i are fixed. The likelihood for the model is then $f(\vec{y}|\vec{x}, \beta, \sigma^2)$.
- The goal is to estimate and make inferences about the parameters β and σ².

Frequentist Approach: Ordinary Least Squares (OLS)

- y_i is supposed to be β times x_i plus some residual noise.
- ► The noise, modeled by a normal distribution, is observed as y_i − βx_i.
- Take β to be the minimizer of the sum of squared errors

$$\sum_{i=1}^{n} (y_i - \beta x_i)^2$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	0000000	000000

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

Now for the randomness. Consider

$$Y_{i} = \beta x_{i} + Z_{i}, \qquad i = 1, 2, \dots, n$$

for $Z_{i} \stackrel{iid}{\sim} N(0, \sigma^{2}).$
Then
 $\blacktriangleright Y_{i} \sim N(\beta x_{i}, \sigma^{2})$
 \blacktriangleright
 $\widehat{\beta} = \sum_{i=1}^{n} \left(\frac{x_{i}}{\sum x_{j}^{2}}\right) Y_{i} \sim N\left(\beta, \sigma^{2} / \sum x_{j}^{2}\right)$

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	0000000	000000

If we predict each y_i to be $\hat{y}_i := \hat{\beta} x_i$, we can define the sum of squared errors to be

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}x_i)^2$$

We can then estimate the noise variance σ^2 by the average sum of squared errors SSE/n or, better yet, we can adjust the denominator slightly to get the unbiased estimator

$$\widehat{\sigma^2} = \frac{SSE}{n-1}$$

This quantity is known as the mean squared error or MSE and will also be denoted by s^2 .

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	0000	000000	000000

$$Y_i = \beta x_i + Z_i, \qquad Z_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

$$\Rightarrow f(y_i|\beta,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (y_i - \beta x_i)^2\right]$$
$$\Rightarrow f(\vec{y}|\beta,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta x_i)^2\right]$$

It will be convenient to write this in terms of the OLS estimators

$$\widehat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}, \qquad s^2 = \frac{\sum (y_i - \widehat{\beta} x_i)^2}{n - 1}$$

- イロト (日) (三) (三) (三) (三) (つ) (つ)

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	0000000	000000

Then

$$\sum_{i=1}^{n} (y_i - \beta x_i)^2 = \nu s^2 + (\beta - \hat{\beta})^2 \sum_{i=1}^{n} x_i^2$$

where $\nu := n - 1$. It will also be convenient to work with the precision parameter $\tau := 1/\sigma^2$. Then

$$f(\vec{y}|\beta,\tau) = (2\pi)^{-n/2}$$
$$\cdot \left\{ \tau^{1/2} \cdot \exp\left[-\frac{\tau}{2}(\beta-\hat{\beta})^2 \sum_{i=1}^n x_i^2\right] \right\}$$
$$\cdot \left\{ \tau^{\nu/2} \cdot \exp\left[-\frac{\tau\nu s^2}{2}\right] \right\}$$

< □ > < @ > < E > < E > E のQ@

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

•
$$\tau^{1/2} \cdot \exp\left[-\frac{\tau}{2}(\beta - \widehat{\beta})^2 \sum_{i=1}^n x_i^2\right]$$

looks normal as a function of β

•
$$\tau^{\nu/2} \cdot \exp\left[-\frac{\tau \nu s^2}{2}\right]$$

looks gamma as a function of τ

(inverse gamma as a function of σ^2)

The natural conjugate prior for (β, σ^2) will be a "normal inverse gamma".

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	0000000	000000

So many symbols... will use "underbars" and "overbars" for prior and posterior hyperparameters and also add a little more structure.

Priors

$$\beta | \tau \sim N(\underline{\beta}, \underline{c}/\tau), \qquad \tau \sim \Gamma(\underline{\nu}/2, \underline{\nu} \underline{s}^2/2)$$

Will write

$$(\beta, \tau) \sim NG(\underline{\beta}, c, \underline{\nu}/2, \underline{\nu} \underline{s}^2/2).$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ 夕 � @

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

It is "routine" to show that the posterior is

$$(\beta, \tau) | \vec{y} \sim NG(\overline{\beta}, \overline{c}, \overline{\nu}/2, \overline{\nu} \, \overline{s^2}/2)$$

where

$$\overline{c} = \left[1/\underline{c} + \sum x_i^2\right]^{-1}, \qquad \overline{\beta} = \overline{c}(\underline{c}^{-1}\underline{\beta} + \widehat{\beta}\sum x_i^2)$$
$$\overline{\nu} = \underline{\nu} + n, \qquad \overline{\nu}\overline{s^2} = \underline{\nu}\overline{s^2} + \nu\overline{s^2} + \frac{(\widehat{\beta} - \underline{\beta})^2}{\underline{c} + \sum x_i^2}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	•000000	000000

ESTIMATING β AND σ^2 :

- The posterior Bayes estimator for β is $\mathsf{E}[\beta|\vec{y}]$.
- ► A measure of uncertainty of the estimator is given by the posterior variance Var[β|ÿ].
- We need to write down the $NG(\overline{\beta}, \overline{c}, \overline{\nu}/2, \overline{\nu} \overline{s^2}/2)$ pdf for $(\beta, \tau)|\vec{y}$ and integrate out τ .
- ► The result is that $\beta | \vec{y}$ has a generalized *t*-distribution. (This is not exactly the same as a non-central *t*.)

000000 000000	INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
	000000	00000	000000	000000

THE MULTIVARIATE *t*-DISTRIBUTION:

We say that a *k*-dimensional random vector \vec{X} has a multivariate *t*-distribution with

- ▶ mean $\vec{\mu}$
- variance-covariance matrix parameter V
- ▶ ν degrees of freedon

if \vec{X} has pdf

$$f(\vec{x}|\vec{\mu}, V, \nu) = \frac{\nu^{\nu/2} \Gamma\left(\frac{\nu+k}{2}\right)}{\pi^{k/2} \Gamma\left(\frac{\nu}{2}\right)} |V|^{-1/2} \left[(\vec{x} - \vec{\mu})^t V^{-1} (\vec{x} - \vec{\mu}) + \nu \right]^{-\frac{\nu+k}{2}}$$

We will write

$$\vec{X} \sim t(\vec{\mu}, V, \nu).$$

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

THE MULTIVARIATE *t*-DISTRIBUTION:

- With k = 1, $\vec{\mu} = 0$, and V = 1, we get the usual *t*-distribution.
- Marginals:

►

$$\vec{X} = \begin{pmatrix} \vec{X}_1 \\ \vec{X}_2 \end{pmatrix} \Rightarrow \vec{X}_i \sim t(\vec{\mu}_i, V_i, \nu)$$

where $\vec{\mu}_i$ and V_i are the mean and variance-covariance matrix of \vec{X}_i .

• Conditionals such as $\vec{X}_1 | \vec{X}_2$ are also multivariate *t*.

$$\mathsf{E}[\vec{X}] \quad = \quad \vec{\mu}, \; \text{ if } \nu > 1$$

$$Var[\vec{X}] = \frac{\nu}{\nu-2}V$$
 if $\nu > 2$

・ロト (四) (日) (日) (日) (日) (日)

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

BACK TO THE REGRESSION PROBLEM:

• Can show that $\beta | \vec{y} \sim t(\overline{\beta}, \overline{cs^2}, \overline{\nu})$ So, the PBE is

$$\mathsf{E}[\beta|\vec{y}] = \overline{\beta}$$

and the posterior variance is

$$Var[\beta|\vec{y}] = \frac{\overline{\nu}}{\overline{\nu} - 1}\overline{c}\overline{s^2}.$$

► Also can show that $\tau | \vec{y} \sim \Gamma(\overline{\nu}/2, \overline{\nu} \, \overline{s^2}/2)$. So, $\mathsf{E}[\tau | \vec{y}] = 1/\overline{s^2}, \qquad Var[\tau | \vec{y}] = 2/(\overline{\nu} \, (\overline{s^2})^2).$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

000000 00000 00000 00000 00000 00000 0000	INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
	000000	00000	0000000	000000

RELATIONSHIP TO FREQUENTIST APPROACH:

The PBE of β

$$\mathsf{E}[\beta|\vec{y}] = \overline{\beta} = \overline{c}(\underline{c}^{-1}\underline{\beta} + \widehat{\beta}\sum x_i^2).$$

It is a weighted average of the prior mean and the OLS estimator of β from frequentist statistics.

- c^{-1} reflects your confidence in the prior and should be chosen accordingly
- ► ∑x_i² reflects the degree of confidence that the data has in the OLS estimator β

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	0000000	000000

Relationship to Frequentist Approach:

Recall also that

$$\overline{\nu}\overline{s^2} = \underline{\nu}\overline{s^2} + \nu \overline{s^2} + \frac{(\widehat{\beta} - \underline{\beta})^2}{\underline{c} + \sum x_i^2}$$

and

$$s^2 = \frac{\sum (y_i - \widehat{\beta} x_i)^2}{n-1} = \frac{SSE}{n-1} = \frac{SSE}{\nu}.$$

So,

The final term reflects "conflict" between the prior and the data.

・ロト (四) (日) (日) (日) (日) (日)

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

CHOOSING PRIOR HYPERPARAMETERS:

When choosing hyperparameters $\underline{\beta}$, \underline{c} , $\underline{\nu}$, and $\underline{s^2}$, it may be helpful to know that $\underline{\beta}$ is equivalent to the OLS estimate from an imaginary data set with

- $\underline{\nu} + 1$ observations
- imaginary $\sum x_i^2$ equal to \underline{c}^{-1}
- imaginary s^2 given by $\underline{s^2}$

The "imaginary" data set might even be previous data!

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

INTRODUCTION 000000	Bayesian Approach 00000	Estimation 0000000	Model Comparison •00000

Suppose you want to fit this overly simplistic linear model to describe the y_i but are not sure whether you want to use the x_i or a different set of explananatory variables. Consider the two models:

 M_1 : $y_i = \beta_1 x_{1i} + \varepsilon_{1i}$

$$M_2 : y_i = \beta_2 x_{2i} + \varepsilon_{2i}$$

Here, we assume

$$\varepsilon_{1i} \stackrel{iid}{\sim} N(0, \tau_1^{-1}) \quad \text{and} \quad \varepsilon_{2i} \stackrel{iid}{\sim} N(0, \tau_2^{-1})$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

are independent.

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	0000000	00000

► Priors for model *j*:

$$(\beta_j, \tau_j) \sim NG(\underline{\beta_j}, \underline{c_j}, \underline{\nu_j}/2, \underline{\nu_j}\underline{s_j}^2)$$

• \Rightarrow posteriors for model *j* are

$$(\beta_j, \tau_j) | \vec{y} \sim NG(\overline{\beta_j}, \overline{c_j}, \overline{\nu_j}/2, \overline{\nu_j}\overline{s_j}^2)$$

The posterior odds ratio is

$$PO_{12} := \frac{P(M_1|\vec{y})}{P(M_2|\vec{y})} = \frac{f(\vec{y}|M_1)}{f(\vec{y}|M_2)} \cdot \frac{P(M_1)}{P(M_2)}$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ 夕 � @

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

Can show that

$$f(\vec{y}|M_j) = a_j \left(\frac{\overline{c_j}}{\underline{c_j}}\right)^{1/2} \left(\overline{\nu_j} \, \overline{s_j^2}\right)^{\overline{\nu_j}/2}$$

where

$$a_j = \frac{\Gamma(\overline{\nu_j}/2) \cdot \left(\underline{\nu_j} \underline{s_j^2}\right)^{\underline{\nu_j}/2}}{\Gamma(\underline{\nu_j}/2) \cdot \pi^{n/2}}$$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

We can get the posterior model probabilities:

$$P(M_1|\vec{y}) = \frac{PO_{12}}{1 + PO_{12}}, \qquad P(M_2|\vec{y}) = \frac{1}{1 + PO_{12}}.$$

where

$$PO_{12} = \frac{a_1 \left(\frac{\overline{c_1}}{\underline{c_1}}\right)^{1/2} \left(\overline{\nu_1} \,\overline{s_1^2}\right)^{\overline{\nu_1}/2}}{a_2 \left(\frac{\overline{c_2}}{\underline{c_2}}\right)^{1/2} \left(\overline{\nu_2} \,\overline{s_2^2}\right)^{\overline{\nu_2}/2}} \cdot \frac{P(M_1)}{P(M_2)}$$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	000000

$$PO_{12} = \frac{a_1 \left(\frac{\overline{c_1}}{c_1}\right)^{1/2} \left(\overline{\nu_1} \,\overline{s_1^2}\right)^{\overline{\nu_1}/2}}{a_2 \left(\frac{\overline{c_2}}{c_2}\right)^{1/2} \left(\overline{\nu_2} \,\overline{s_2^2}\right)^{\overline{\nu_2}/2}} \cdot \frac{P(M_1)}{P(M_2)}$$

- $\overline{\nu_j} \overline{s_j^2}$ contains the OLS SSE.
- A lower value indicates a better fit.
- So, the posterior odds ratio rewards models which fit the data better.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

INTRODUCTION	Bayesian Approach	Estimation	Model Comparison
000000	00000	000000	00000

$$PO_{12} = \frac{a_1 \left(\frac{\overline{c_1}}{c_1}\right)^{1/2} \left(\overline{\nu_1} \,\overline{s_1^2}\right)^{\overline{\nu_1}/2}}{a_2 \left(\frac{\overline{c_2}}{c_2}\right)^{1/2} \left(\overline{\nu_2} \,\overline{s_2^2}\right)^{\overline{\nu_2}/2}} \cdot \frac{P(M_1)}{P(M_2)}$$

- $\overline{\nu_j} \overline{s_j^2}$ contains a term like $(\widehat{\beta}_j \underline{\beta}_j)^2$
- So, the posterior odds ratio supports greater coherency between prior info and data info!

< □ > < @ > < E > < E > E のQ@