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A SIMPLE LINEAR MODEL

Suppose that we observe
I explanatory variables x1, x2, . . . , xn

and
I dependent variables y1, y2, . . . , yn

Assume they are related through the very simple linear model

yi = βxi + εi

for i = 1, 2, . . . ,n, with ε1, ε2, . . . , εn being realizations of iid
N(0, σ2) random variables.
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A SIMPLE LINEAR MODEL

yi = βxi + εi, i = 1, 2, . . . ,n

I The xi can either be constants or realizations of random
variables.

I In the latter case, assume that they have joint pdf f (~x|θ)
where θ is a parameter (or vector of parameters) that is
unrelated to β and σ2.

The likelihood for this model is

f (~y,~x|β, σ2, θ) = f (~y|~x, β, σ2, θ) · f (~x|β, σ2, θ)

= f (~y|~x, β, σ2) · f (~x|θ)
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A SIMPLE LINEAR MODEL

I Assume that the xi are fixed. The likelihood for the model
is then f (~y|~x, β, σ2).

I The goal is to estimate and make inferences about the
parameters β and σ2.

Frequentist Approach: Ordinary Least Squares (OLS)
I yi is supposed to be β times xi plus some residual noise.
I The noise, modeled by a normal distribution, is observed

as yi − βxi.
I Take β to be the minimizer of the sum of squared errors

n∑
i=1

(yi − βxi)
2
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A SIMPLE LINEAR MODEL

β̂ =

∑n
i=1 xiyi∑n
i=1 x2

i

Now for the randomness. Consider

Yi = βxi + Zi, i = 1, 2, . . . ,n

for Zi
iid∼ N(0, σ2).

Then
I Yi ∼ N(βxi, σ

2)

I

β̂ =

n∑
i=1

(
xi∑

x2
j

)
Yi ∼ N

(
β, σ2/

∑
x2

j

)
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A SIMPLE LINEAR MODEL

If we predict each yi to be ŷi := β̂xi, we can define the sum of
squared errors to be

SSE =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − β̂xi)
2

We can then estimate the noise variance σ2 by the average sum
of squared errors SSE/n or, better yet, we can adjust the
denominator slightly to get the unbiased estimator

σ̂2 =
SSE

n− 1
.

This quantity is known as the mean squared error or MSE and
will also be denoted by s2.
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THE BAYESIAN APPROACH:

Yi = βxi + Zi, Zi
iid∼ N(0, σ2)

⇒ f (yi|β, σ2) =
1√

2πσ2
exp

[
− 1

2σ2 (yi − βxi)
2
]

⇒ f (~y|β, σ2) =
(
2πσ2)−n/2

exp

[
− 1

2σ2

n∑
i=1

(yi − βxi)
2

]
It will be convenient to write this in terms of the OLS estimators

β̂ =

∑
xiyi∑
x2

i
, s2 =

∑
(yi − β̂xi)

2

n− 1
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THE BAYESIAN APPROACH:

Then
n∑

i=1

(yi − βxi)
2 = νs2 + (β − β̂)2

n∑
i=1

x2
i

where ν := n− 1.
It will also be convenient to work with the precision parameter
τ := 1/σ2.
Then

f (~y|β, τ) = (2π)−n/2

·
{
τ 1/2 · exp

[
− τ

2 (β − β̂)2∑n
i=1 x2

i

]}
·
{
τν/2 · exp

[
− τνs2

2

]}
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THE BAYESIAN APPROACH:

I τ 1/2 · exp
[
− τ

2 (β − β̂)2∑n
i=1 x2

i

]
looks normal as a function of β

I τν/2 · exp
[
− τνs2

2

]
looks gamma as a function of τ

(inverse gamma as a function of σ2)

The natural conjugate prior for (β, σ2) will be a “normal inverse
gamma”.
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THE BAYESIAN APPROACH:

So many symbols... will use “underbars” and “overbars” for
prior and posterior hyperparameters and also add a little more
structure.

I Priors

β|τ ∼ N(β, c/τ), τ ∼ Γ(ν/2, ν s2/2)

I Will write
(β, τ) ∼ NG(β, c, ν/2, ν s2/2).
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THE BAYESIAN APPROACH:

It is “routine” to show that the posterior is

(β, τ)|~y ∼ NG(β, c, ν/2, ν s2/2)

where

c =
[
1/c +

∑
x2

i

]−1
, β = c(c−1β + β̂

∑
x2

i )

ν = ν + n, νs2 = νs2 + νs2 +
(β̂ − β)2

c +
∑

x2
i
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ESTIMATING β AND σ2:

I The posterior Bayes estimator for β is E[β|~y].

I A measure of uncertainty of the estimator is given by the
posterior variance Var[β|~y].

I We need to write down the NG(β, c, ν/2, ν s2/2) pdf for
(β, τ)|~y and integrate out τ.

I The result is that β|~y has a generalized t-distribution.
(This is not exactly the same as a non-central t.)
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THE MULTIVARIATE t-DISTRIBUTION:

We say that a k-dimensional random vector ~X has a
multivariate t-distribution with

I mean ~µ
I variance-covariance matrix parameter V
I ν degrees of freedon

if ~X has pdf

f (~x|~µ,V, ν) =
νν/2Γ

(
ν+k

2

)
πk/2Γ

(
ν
2

) |V|−1/2
[
(~x− ~µ)tV−1(~x− ~µ) + ν

]− ν+k
2
.

We will write
~X ∼ t(~µ,V, ν).



INTRODUCTION Bayesian Approach Estimation Model Comparison

THE MULTIVARIATE t-DISTRIBUTION:

I With k = 1, ~µ = 0, and V = 1, we get the usual
t-distribution.

I Marginals:

~X =

(
~X1
~X2

)
⇒ ~Xi ∼ t(~µi,Vi, ν)

where ~µi and Vi are the mean and variance-covariance
matrix of ~Xi.

I Conditionals such as ~X1|~X2 are also multivariate t.
I

E[~X] = ~µ, if ν > 1

Var[~X] = ν
ν−2 V if ν > 2
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BACK TO THE REGRESSION PROBLEM:

I Can show that β|~y ∼ t(β, cs2, ν)
So, the PBE is

E[β|~y] = β

and the posterior variance is

Var[β|~y] =
ν

ν − 1
cs2.

I Also can show that τ |~y ∼ Γ(ν/2, ν s2/2).
So,

E[τ |~y] = 1/s2, Var[τ |~y] = 2/(ν (s2)2).
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RELATIONSHIP TO FREQUENTIST APPROACH:

The PBE of β

E[β|~y] = β = c(c−1β + β̂
∑

x2
i ).

It is a weighted average of the prior mean and the OLS
estimator of β from frequentist statistics.

I c−1 reflects your confidence in the prior and should be
chosen accordingly

I
∑

x2
i reflects the degree of confidence that the data has in

the OLS estimator β̂
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RELATIONSHIP TO FREQUENTIST APPROACH:

Recall also that

νs2 = νs2 + νs2 +
(β̂ − β)2

c +
∑

x2
i

and

s2 =

∑
(yi − β̂xi)

2

n− 1
=

SSE
n− 1

=
SSE
ν
.

So,

νs2︸︷︷︸
“posterior

SSE”

= νs2︸︷︷︸
“prior
SSE”

+ νs2︸︷︷︸
SSE

+
(β̂ − β)2

c +
∑

x2
i

The final term reflects “conflict” between the prior and the data.
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CHOOSING PRIOR HYPERPARAMETERS:

When choosing hyperparameters β, c, ν, and s2, it may be
helpful to know that β is equivalent to the OLS estimate from
an imaginary data set with

I ν + 1 observations

I imaginary
∑

x2
i equal to c−1

I imaginary s2 given by s2

The “imaginary” data set might even be previous data!
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MODEL COMPARISON

Suppose you want to fit this overly simplistic linear model to
describe the yi but are not sure whether you want to use the xi
or a different set of explananatory variables.
Consider the two models:

M1 : yi = β1x1i + ε1i

M2 : yi = β2x2i + ε2i

Here, we assume

ε1i
iid∼ N(0, τ−1

1 ) and ε2i
iid∼ N(0, τ−1

2 )

are independent.
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MODEL COMPARISON

I Priors for model j:

(βj, τj) ∼ NG(βj, cj, νj/2, ν jsj
2)

I ⇒ posteriors for model j are

(βj, τj)|~y ∼ NG(βj, cj, νj/2, ν jsj
2)

I The posterior odds ratio is

PO12 :=
P(M1|~y)

P(M2|~y)
=

f (~y|M1)

f (~y|M2)
· P(M1)

P(M2)
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MODEL COMPARISON

Can show that

f (~y|Mj) = aj

(
cj

cj

)1/2 (
νj s2

j

)νj/2

where

aj =
Γ(νj/2) ·

(
νj s2

j

)νj/2

Γ(νj/2) · πn/2
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MODEL COMPARISON

We can get the posterior model probabilities:

P(M1|~y) =
PO12

1 + PO12
, P(M2|~y) =

1
1 + PO12

.

where

PO12 =
a1

(
c1
c1

)1/2 (
ν1 s2

1

)ν1/2

a2

(
c2
c2

)1/2 (
ν2 s2

2

)ν2/2 ·
P(M1)

P(M2)
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MODEL COMPARISON

PO12 =
a1

(
c1
c1

)1/2 (
ν1 s2

1

)ν1/2

a2

(
c2
c2

)1/2 (
ν2 s2

2

)ν2/2 ·
P(M1)

P(M2)

I νj s2
j contains the OLS SSE.

I A lower value indicates a better fit.
I So, the posterior odds ratio rewards models which fit the

data better.



INTRODUCTION Bayesian Approach Estimation Model Comparison

MODEL COMPARISON

PO12 =
a1

(
c1
c1

)1/2 (
ν1 s2

1

)ν1/2

a2

(
c2
c2

)1/2 (
ν2 s2

2

)ν2/2 ·
P(M1)

P(M2)

I νj s2
j contains a term like (β̂j − βj)

2

I So, the posterior odds ratio supports greater coherency
between prior info and data info!
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