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ABsTRACT. We develop a multiresolution representation of a class of integral operators satisfying
boundary conditions on simple domains in order to construct fast algorithms for their application.
We also elucidate some delicate theoretical issues related to the construction of periodic Green’s
functions for Poisson’s equation.

By applying the method of images to the non-standard form of the free space operator, we
obtain lattice sums that converge absolutely on all scales, except possibly on the coarsest scale. On
the coarsest scale the lattice sums may be only conditionally convergent and, thus, allow for some
freedom in their definition. We use the limit of square partial sums as a definition of the limit and
obtain a systematic, simple approach to the construction (in any dimension) of periodized operators
with sparse non-standard forms.

We illustrate the results on several examples in dimensions one and three: the Hilbert transform,
the projector on divergence free functions, the non-oscillatory Helmholtz Green’s function and the
Poisson operator. Remarkably, the limit of square partial sums yields a periodic Poisson Green’s
function which is not a convolution.

Using a short sum of decaying Gaussians to approximate periodic Green’s functions, we arrive at
fast algorithms for their application. We further show that the results obtained for operators with
periodic boundary conditions extend to operators with Dirichlet, Neumann, or mixed boundary
conditions.

1. INTRODUCTION

The primary goal of this paper is to develop a multiresolution representation of a class of integral
operators satisfying boundary conditions on simple domains and construct fast algorithms for their
application. As a practical consequence of our approach, we show that a minor modification of the
fast algorithms for free space operators in [24, 9, 6|, yields a fast algorithm (of the same complexity)
for the operator satisfying boundary conditions.

Another goal of this paper is to elucidate some delicate theoretical issues related to the method
of images for the construction of periodic Green’s functions for Poisson’s equation. Indeed, due to
the slow decay of the Poisson’s kernel, the solution of the periodic problem is not unique and, in
fact, several physically meaningful periodic Green’s functions have been discussed in the literature
(over a long period of time). Within our approach, these Green’s functions are easy to describe as
particular choices of just a few parameters in the construction.
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In our approach we apply the method of images not to the free space operator itself but to its non-
standard form. The non-standard form splits the action of the operator to an infinite set of scales
and, for appropriate classes of operators, yields a sparse representation [7]. For operators with
kernels whose partial derivatives decay faster than the kernel itself (e.g., the Calderon-Zygmund
operators), the non-standard form is sparse on all scales, except for the coarsest scale. We use the
rapid decay of the coefficients of the non-standard form to construct its periodized version and to
show that, on all scales except possibly the coarsest scale, the lattice sums converge absolutely and
require no further analysis. On the coarsest scale, for some of the coefficients, the lattice sums may
be only conditionally convergent and, thus, allow for some freedom in their definition. For such
coeflicients a summation convention needs to be specified and we choose the limit of square partial
sums for that purpose. In this way, we obtain a systematic, simple approach to the construction (in
any dimension) of periodized operators with sparse non-standard forms. We illustrate the results on
several examples in dimensions one and three: the Hilbert transform, the projector on divergence
free functions (the so-called Leray projector), the non-oscillatory Helmholtz Green’s function and
the Poisson operator.

The Poisson Green’s function appears in many fields including electrostatics, material sciences, and
molecular dynamics (see e.g. [18, 27, 31]). The standard method of images when applied directly
to the free space kernel yields only a formal result that requires interpretation, a key topic in lattice
sum literature. As it turns out, the periodic Poisson Green’s function is non-unique which explains
the appearance of several versions in the literature (see e.g. [21, 26| for a review). An early seminal
contribution was made by P. Ewald [20], although the history of lattice sums starts earlier and we
refer to [21] for a historical overview and results prior to 1980.

Due to the slow decay of the Poisson kernel, ||x — y[|™*, the analysis of its periodization turns out
to be more delicate than for (even slightly) faster decaying kernels. Similar difficulties arise in other
periodic problems with operators exhibiting the same rate of decay, e.g., Stokes operator recently
considered in [28]. For the Poisson kernel, our approach identifies several specific components of
the periodized non-standard form which converge only conditionally and, moreover, are not limits
of the corresponding components of, e.g., ||x — yH_le_””x_y” as p — 0 or other possible operator
limits. As a peculiar consequence, the limit of square partial sums yields a Green’s function which
is not a convolution, even though it may be natural to expect the method of images, according
to its formal form, to always produce a convolution kernel. As a consequence, using such Green’s
function to solve the Poisson equation yields solutions which are not necessarily mean-free.

Our algorithms approximate the operator kernel via a separated representation given by a short lin-
ear combination of decaying Gaussians with positive exponents and coefficients, which immediately
reduces the computational cost and yields a non-standard form with elements given by one dimen-
sional sums. As a result, for any finite accuracy, we obtain an efficient separated representation
in any dimension d > 2 and associated fast algorithms. This type of approximation via Gaussians
(see e.g. |11, 12, 13, 14]) has been successfully used in [24, 9, 6] to construct fast and accurate
algorithms for applying free space convolution kernels for any user supplied finite accuracy. Using
the non-standard form of free space operators, we show that, on simple domains, the periodized
non-standard form also yields fast and accurate algorithms for applying periodic operators as well
as for applying operators satisfying Dirichlet or Neumann boundary conditions. We also note that
the Fast Multipole Method (FMM) [23, 16] may also be used to apply such periodic operators.

We limit our presentation to the non-standard forms of weakly singular or singular operators. We
note that non-standard forms may also be constructed for hyper-singular operators [8]. However,
periodization of such operators does not present a challenge due to the rapid decay of their kernels
away from singularities and we do not discuss them in this paper. In order to limit the size of
the paper, we do not present numerical results. We note, however, that the speed of algorithms
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for Green’s functions with boundary conditions is essentially the same as that for the free space
case. Indeed, we show that the operators effectively coincide on the wavelet scales which are those
dominating the computational cost.

We start in Section 2 by introducing the non-standard form for convolution operators in dimension
d = 1 using multiwavelet bases |1, 2, 3|. In this case only one term may require an appropriate
interpretation and we illustrate this using the Hilbert transform as an example. In Section 3 we
construct the non-standard form in dimension d = 3 for operators with periodic boundary condi-
tions. As examples, we then analyze the projector on divergence free functions, the non-oscillatory
Helmholtz Green’s function and, in Section 4, the Poisson Green’s function. In Section 5 we describe
a fast algorithm for applying these operators using separated representations. In Section 6, we con-
struct Green’s functions which incorporate Dirichlet, Neumann, or mixed boundary conditions on
simple domains. Finally, we provide some closing remarks in Section 7 and collect most proofs in
the appendix.

2. PRELIMINARIES

2.1. Multiresolution and non-standard form. In this section we review a multiresolution ap-
proach for representing and applying operators in one dimension. Since we use multiwavelets as the
underlying basis for the multiresolution representation, we briefly describe their properties (see also
[1, 3,9, 6]). We then turn to the non-standard form of operators in multiwavelet bases and describe
a class of operators which becomes effectively sparse in this representation (see also |7, 6]). We
then construct an operator with periodic boundary conditions by applying the method of images
to the components of the non-standard form and illustrate the result with the Hilbert transform.
The notation used below deviates slightly from usual wavelet notation, however, its introduction
facilitates the higher dimensional description presented in later sections.

2.1.1. Multiwavelets. Let 77[“; b] denote the space of polynomials of degree less than m restricted to
the interval [a,b]. Let us define subspaces

Vi = U Plo-it2-it1) © L*(R)
l€Z

for j € N, where N denotes all non-negative integers. These subspaces are nested
Vocvlc...cvjc...

and U]Oi oV = L?(R). We select scaling functions to form an orthonormal basis of Vi, Qﬁi’é(iﬂ) =
2]'/2%;0(273; —1), j €N, 1 €Z, where

V2i+1P(2x — 1), z€]0,1]

, 1€40,...,m—1},
0, otherwise { }

(1) Yio(z) = {

and P; are the i-th order Legendre polynomials. We will need the cross-correlation functions of the
scaling functions,

(2) Bio (1) = /R Biole + yhbio(y)dy,

where supp(®;;) C [—1,1] for i,i" € {0,...,m — 1}. Due to orthogonality of the scaling functions
in (1), these functions have vanishing moments (see [9, §2.2|),

(3) /q)ii/(a:)xkdxzo for i+i>1, and 0 <k <i+i —1.
R
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We define the wavelet subspaces W; as

W@V =V,
so that
Vipi=VoeWo@--- oW
We denote the multiwavelets, an orthonormal basis of W;, as 1/127;;{ fori € {0,...,m—1} and [ € Z.

We do not need an explicit expression for the multiwavelets and only use their vanishing moments
property,

(4) /1[){;’{(:E)xkdx:0 for i,k=0,....m—1, l€Z, and j € N,
R

which follows from orthogonality of the subspaces W; and V;. Also we need the cross-correlation
functions of the wavelets,

(5) Dijoan (1) = /R Wi+ )i (0)dy,

where ss’ = 11,10,01 and ¢,7" € {0,...,m — 1}. In this notation ®;;.00 = ®; in (2) are the
cross-correlations of the scaling functions.

In L%(R?) we use the tensor-product basis formed by products of multiwavelets and scaling functions
from the same scale. For example, in dimension d = 2 the basis for W; is given by 1[)2]’{(1:)1[)2],’11 (y),
zﬁg;;ll (m)zﬁf,”l(;(y), and qﬁy’é(a:) g,”li (v), whereas the basis for Vj} is given by 1[){;0[ (x) g,;;l(;(y), where (z,y) €
R2 i,i' € {0,...,m — 1}, and [,I' € Z.

Since multiwavelet bases include discontinuous basis functions (like those of the Haar basis), using
them as the underlying basis for the non-standard form (see below) limits our discussion to, at most,

singular operators. If we were to extend our approach to include hyper-singular operators, it would
be necessary to use sufficiently smooth wavelets as the underlying basis [8].

2.1.2. Non-standard form. The non-standard form of an operator T is based on the telescopic series
representation

o
T = RTP+Y» (TP — P TP
j=1

(6) = PTPy+ Z (Q;TQ; + Q;TP; + PTQy),
=0

where @; and P; are the orthogonal projectors, @; : L?(R?) — W; and P; : L*(RY) — V; and
Pj 1 = P;j 4+ @;. For the purposes of this paper we distinguish the wavelet part of the non-standard
form, namely,

(7) Twavetet = {QTQ;, Q5T P;, PiTQj} ;o
from the scaling part of the non-standard form,

(8) Tscaling = POTPO-
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2.1.3. Example in one dimension. Let K be the kernel of the convolution operator

(9) (Tf) () = /R K(z — ) f(y)dy.

The elements of the scaling part of the non-standard form are computed as the projection of the
kernel onto the scaling functions,

(10) Toe = /R /R K (z — y)vi(@)wd (y) dyde = /R K(2) @ (z + I — 1)da

= / K(x+1—1)®;(z)dz,
R

for[,I' € Z and i,i’ € {0,...,m—1}. Similarly, the elements of the wavelet part of the non-standard
form are computed as the projection of the kernel onto a multiwavelet functions,

(11) Tj/sj = / / K(x — gl (@)l (y) dyde = / K(2) @i, (22 + 1! — 1)da
R JR ’ R

_ 9 / K27 (@ 41— 1)) @i (2)dr,
R
for j e N, I,I' € Z, ss' = 11,10,01, and 4,7 € {0,...,m — 1}, where m is the number of vanishing
moments.

Remark. Limiting our analysis to singular operators assures existence of the elements of the non-
standard form in (10) and (11).

Definition 1. We say that an operator T is integral-defined if the elements of its non-standard
form (10) and (11) are given by either absolutely or conditionally convergent integrals.
Examples of integral-defined operators include weakly singular and singular Calderon-Zygmund

operators, and various classes of pseudo-differential operators, see [8].

Proposition 2. Let T be an integral-defined operator with a convolution kernel K € C™(R\{0}),
m > 1, satisfying,

(12) |07 K ()] <

C
|l‘|;+ﬁ for co >0, 0<a<m and [B>1.

Then, represented in a multiwavelet basis with m vanishing moments, 7 € N, [,I' € Z, and i,i =
0,...,m —1, the elements of the wavelet part of the non-standard form satisfy

Tl <qy (1 4 ‘l _ l/D—min{m,m}—B’

i’ ss’

where TH'- ,/ is given by (11), ss’ # 00, with constants C; > 0 that depend on the scale j but not on

i3/ ;88
I or'. The elements of its scalmg part satisfy

] <o ),

where T, }00/ is given by (10) and the constant Cy does not depend on 1 orl'.

See Appendix 8.2 for the proof.

Proposition 2 states that the non-standard form of operators satisfying (12) are effectively sparse.
Indeed, the operator norm of the difference between the infinite m x m block-Toeplitz matrices
Q;TQ; = {1y ”}WEZ Q;TP; = {Tj'l—”}l’llez Jand P,TQ; = {Tﬂ'?’—l'}l’llez
IRl AR [ er0,me1) Y @510 [ iefo,.m—1}) I A0l [ ieqo,.m—1)
and their banded versions (obtained by setting to zero blocks with |l — I'| > b) decay rapidly at least
as b~ min{mmi=5 where b is the width of the band. Hence, for any finite but arbitrary accuracy,
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the entries outside the band may be discarded resulting in a representation of the operator in terms
of banded matrices and, therefore, yielding a fast algorithm for its application (see e.g. [7]).

2.2. Operators with periodic boundary conditions. Given a convolution operator T' of the
form (9), the method of images is the standard approach to construct an associated operator T
satisfying a periodic boundary condition. Specifically,

(13) / [ZK:E—@H—n)

nEL

f(y)dy,

where (T f) (z) = (T f) (x+1) for z € [0,1]. However, the sum in (13) may require further analysis
since it may diverge or converge only conditionally.

Instead of considering (13), we first construct the non-standard form of the free space operator
(9) and then apply the method of images to the elements of the non-standard form. By linearity,
given the elements (10)-(11) of the non-standard form of the free space operator (7)- (8), we may
construct lattice sums on each scale separately. As the method of images for the elements of the
wavelet part of the non-standard form, we define the periodized operator on scale j € N as

1= A—1'+27
(14) T =2 Tt
nezZ
for ,1' € {0,... ,2{—1}, ss’ =11,10,01, and i,47" € {0,...,m—1}. In this way, restricting indices [, I’
to the set {0,...,27 —1} in (14), limits the integration in (11) to a unit interval while the summation

over index n achieves the periodicity. If the kernel K satisfies the assumptions of Proposition 2, we
T] A=1'42in

have )
< J . ’
> % 1588’ — nZG% (1 + ’l 4+ 2jn’)m1n{m,m}+5

and, hence, the sum in (14) converges absolutely for any choice of multiwavelet basis with m > 1
vanishing moments. We note that the sum in (14) formally corresponds to the projection of the
periodized kernel on the wavelet subspaces,

Z Tz]z lssl e - / / Z K l‘ —y+ n)ﬂ’fz’fs//(y)%],’sl(x)dyd:n

nez nez

_ / ZKg;+n Do (P +1' — 1)da,

nGZ

T]ll

i’ SS

but while the series on the left hand side is absolutely convergent for ss’ # 00, the sum on the right
hand side may not converge.

For ss’ = 00, the elements of the scaling part of the non-standard form satisfy
Co
- (1 + ‘n‘)min{i-l—i’,m}-‘rﬁ’

0;n
1’500

and, thus, unless i + 1’ = 0,
0
(15) w0 = 2_ Tittoos
nez

is absolutely convergent for any choice of multiwavelet basis with m > 1 vanishing moments. How-
ever, for i =i’ = 0, the absolute convergence is not guaranteed and we choose a symmetric summa-
tion convention, namely,

N

16 Tovoo = lim > Tyt

(16) 00;00 Nl_lf})o » 00;00
n=—
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Remark 3. For kernels satisfying the assumptions of Proposition 2, on fine scales (j > 1) and for
fixed 1,1’, we have

Jil—l'+2in gil—=U
Z ,Tii’;ss’ ~ ,Tii’;ss’
nez
due to the rapid decay of the terms in the sum. Thus, for any given accuracy € > 0, on a sufficiently
fine scale the norm of the difference between the non-standard form of the free space and the

periodized operators is less than e.

2.2.1. Example. Assuming that the non-standard form of the Hilbert transform (a singular operator
with kernel K (z) = 1/7 p.v.1/z) is available in the multiwavelet basis with m > 1, we consider its
periodic version,

1 ! 1 !
—p-v. /0 1% mf(y)dy =Dp.v. /0 cot m(x —y) f(y)dy,

where f € L2[0,1].

Since the kernel K satisfies Proposition 2, the Hilbert transform is effectively sparse in the non-
standard form. Furthermore, all elements of the wavelet part of the non-standard form of the Hilbert
transform with periodic boundary conditions converge absolutely. In fact, due to rapid convergence
of the series, we may compute them directly via (14).

For the scaling part of the non-standard form, all elements in (15) converge absolutely except for
76%%0. Let us show that 7'000;;000 = 0 according to the definition (16). Indeed, we have

N
;0 _ 400 : 0;n 0;—n
76%;00 = Top,00 + A}lm E : <T00;00 + Too;oo) )
— 00 —

. 1 L ®go(x)
om 00
Tobi00 = —p-v. / Ztn dzx.

where

Seeing that ®gp(x) = 1 — |z| is an even function, it follows that TO()(;?OO = 0 due to parity. Also, for
n # 0, we have

. . 1 (! 1 1 1 [t 2
Tooé;noo +T()Oé;08 = ;/1 (m e n) Poo(z)dr = ;/ —————®(x)dx =0,

where the integrals are well defined since ®gp(£1) = 0.

In this example the elements of the non-standard form coincide with those obtained using the kernel
p.v. cot(mx) [6].

3. PERIODIZATION OF THE NON-STANDARD FORM IN THREE DIMENSIONS

In this section we develop the non-standard form for operators in dimension d = 3. As in dimension
d = 1, we construct the operator with periodic boundary conditions by applying the method of
images to the non-standard form of the free space operator. We demonstrate that, as in dimension
d =1, all elements of the wavelet part of the non-standard form and nearly all elements of its scaling
part converge absolutely. With several representative examples, we illustrate how to analyze the
remaining elements of the scaling part of the non-standard form. In what follows, we denote the
standard vector p-norm by ||x||,.
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3.1. Non-standard form in dimension three. Let us consider integral operators given by a
convolution kernel in dimension d = 3,

a7) (TH ) = [ K= y)f)y
R

for x,y € R3. The basis functions (both scaling and multiwavelet) are the tensor product of the

one-dimensional basis functions described in Section 2.1.1 and are denoted as

j;1 H H l
as) W0 = VA (e )5, o),
Wherex—(l‘l,iﬂg,iﬂg) 7 eN, 1—([1,[2,13) €Z3 i= (’il,ig,lg) S {0 ,m— 1}3 andS—(81,82,83)

with s1,s9,s3 = 0 or 1. Thus, in this notation, the scaling functlons correspond to \I'] . We also
use the cross-correlation functions of the wavelets,

(19) Diirss (X) = ” B0 (x + y) Ty (y)dy,

for ss’ # 00. Since most of our analysis deals with the cross-correlations of the scaling functions,
instead of denoting them as ®j5,00, we simplify their notation as ®jy,

(20) i (x) = Py ir (1) Piiy (w2) iy, (w3),
where ®;; are one dimensional cross-correlations of the scaling functions in (2).

The elements of the wavelet part of the non-standard form of the operator in (17) are given by
1) TH = / ] K(x- )@ () B (x)dydx = 3 K (x) @55 (2% + 1 — 1)dx,
R3 JR R

for ss’ #00, j € N, 1,I' € Z3, and i,i’ = {0,...,m — 1}3, while the elements of the scaling part are
given by

(22) Tl = / K(x —y) @y ()R (x)dydx = | K(x)®s(x +1 — 1)dx
R3 JR3 R3
= K(x+1-1)®;(x)dx,
R3
for L1 € Z? and i,i’ = {0,...,m — 1}>. We have an extension of Proposition 2:

Proposition 4. Let T be an integral-defined operator (i.e., (21) and (22) are either absolutely or
conditionally convergent) with convolution kernel K € C™(R3\{0}), m > 3, satisfying,

(23) ID°K(x)] < calxll;' ™ for ca>0, 0<|a|<m and B>1,
where DY = 8'0“/(“%0‘18950‘283: ,a=(ar,az,a3) €N? and |a] = a1 + ag + as.

Then, represented in a multiwavelet basis with m vanishing moments, 7 € N, L1 € Z3 and i,i’ =
{0,...,m — 1}3, the elements of the wavelet part of the non-standard form satisfy

TH < €5 (14 1= 1||y) " mmimm=s

ii/ SS

where THY s given by (21), ss' # 00, with constants C; > 0 that depend on the scale j but not

ii/ ;SS

on 1,1, The elements of the scaling part satisfy

T ‘ < Cp (14 1=1y)~ mintitTlmi=s

where T11 00 is given by (22).

The proof of Proposition 4 is similar to that for Proposition 2 and is presented in Appendix 8.3.
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Remark. We note that the estimates of the rate of decay in Proposition 4 allow us to set to zero all
blocks with ||l —1'||2 > b, where b is some parameter chosen according to the desired accuracy. We
show in Section 5 that separated representation of operators allows us to use ordinary banded ma-
trices to take advantage of this property. Thus, the bandwidth parameter b should not be confused
with the bandwidth of a matrix organized in a lexicographical order to represent a multidimensional
operator.

3.2. Operators with periodic boundary conditions in dimension three. Using the same
approach as in dimension d = 1, we apply the method of images to the non-standard form of the
free space operator to construct the operator satisfying the periodic boundary condition. As before,
the wavelet part elements of the non-standard form are given by

(24) T]ll_szll-i-Qj

ii’;ss’ ii’;ss’
neZ3

for j e N, 1,I' € {0,...,2/ —1}3, 88’ # 00, and i,i’ € {0,...,m—1}3, and we assume that the kernel
satisfies the assumptions on Proposition 4. Since

Z - 1+2Jn‘ < Z Cj

Tj,l r
o 2 (L4 L= 4 2imfp)mntmmhs?

ii’ SS

the sum in (24) converges absolutely for any choice of multiwavelet basis with m > 3 — 3 vanishing
moments. From now on, we assume m > 3 — § and with this condition all elements of the wavelet
part of the non-standard form are well defined.

For ss’ = 00, the elements of the scaling part of the non-standard form satisfy
0 Co
trii’;OO‘ < (1 + ||n‘|2)min{|i+i",m}+5'

and, thus, for [i+1| >3 — f,
0;
(25) iwioo = 2 Tivoo

nezs
is absolutely convergent for any choice of multiwavelet basis with m > 3 — 8 vanishing moments.
For |i+1| <3 — 3, we select a particular summation convention, the so-called square partial sums,
O;n
(26) Tioo = Jim > Tiiloo

N—oo
[nfleo <N

Next we construct the non-standard form for several operators with periodic boundary conditions.
We start with the projector on divergence free vector functions since its kernel decays relatively fast
making the analysis simpler. Later, we consider the Poisson operator in free space and construct all
possible operators with periodic boundary conditions consistent with its free space version. Within
our approach it is immediate how to identify the few elements of the non-standard form responsible
for this lack of uniqueness. This non-uniqueness is due to the slow decay of the free space Poisson
kernel and, for the particular example we choose to present, it leads to a periodic operator which is
not a convolution.

3.3. Projector on divergence free functions with periodic boundary conditions. The pro-
jector on divergence free vector functions (the so-called Leray projector) is given by the matrix of
convolution kernels,

1 S 3x,x,
(27) PLL/ (X) = (5“/5(}() — E < >

Iel3 I3
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where ¢,/ = 1,2,3 and §,,/ denotes the Kronecker delta function (see e.g. [17] for more details). This
operator may be obtained using the Riesz transform, see the derivation in, e.g., [25]. Observing that
the first term in (27) is the identity operator (if ¢« = ), it is sufficient to consider the non-standard
forms of the free space operators [9],

1 0, 3,2,
(28) TLL’f(X) = _p'V'/ ( “ 3 il 5> f(y)dy L V= 1,2,3,

4w R \x—ylz [x—yl3
and use them to construct the periodized non-standard form. Since operators in (28) satisfy Propo-
sition 4 with 8 = 3, all elements of the wavelet part of the periodized non-standard form converge
absolutely for any multiwavelet basis (m > 1). We have

Proposition 5. Let us consider the non-standard form of operators T, (28) in a multiwavelet
basis. Then

(i) The elements (24) of the wavelet part of the periodized non-standard form,

j;1-1 3(% +n,) (s +ny) Piors (2 I —1d
7:1 ;8850 4 Z / L1 < |X—|—Il||2 ||X—|—Il||g ii ;SS( X+ ) X,

nez3

converge absolutely on all scales j € N.

(ii) For [i+1'| > 1, the elements (25) of the scaling part of the non-standard form ,

O 3(xb +nb)(‘rbl +nb')>
7.9 v. Dy (x)dx,
woo = iy %ﬁ’ N e ()

converge absolutely.

(111) Fori=1 =0, the elements (26) of the scalmg part of the non-standard form vanish,

;0 3@+ n)(ze + 1)

’ 47r Novoo =i x +nl3

Proof. The absolute convergence of (i) and (ii) follows directly from Proposition 4. To demonstrate
(iii), we show that the sum in (29) is zero for any fixed N.

Since the result does not depend on the choice of indices, if ¢ # ¢/, we set ¢« = 1 and / = 2. Thus,
we consider

N

3(x1 +n1)(z2+ 1
Z P-V-/ (21 4+ 1) 25 2)¢00($1)¢00($2)¢00($3)dwldiﬂzdx:a-
[—1,1]¢ [x +nl|3

ni,nz,ng=—N

Since the function ®qq is even, parity considerations and symmetry of summation with respect to
zero, imply that each individual term obtained by expanding (z1 4+ n1)(x2 + n2) = 122 + nyze +
nox1 + ning vanishes.

For v =/, we set « = ¢/ = 1 and consider

g: v / —2(z1 +n1)% + (v2 +n2)? + (23 + n3)?
[-1,1)3

I + |3

oo (1) Poo(72)Poo(x3) dx.

ni,n2,n3=—N

The three terms in the numerator cancel each other, since the sum for each term is independent of
the choice of indices. O

Remark 6. The same approach applies to the periodization of the Riesz transform itself.
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3.4. Non-oscillatory Helmholtz Green’s function with periodic boundary conditions.
Let us consider the problem

(30) (A +p*)ux) = f(x)
(31) u(x+n) = u(x)
for x € [0,1]3, u > 0, n € Z3, and f € L%([0,1]®). Although this problem is easily handled by the

standard method of images, we apply our approach in order to show that the limit as ¢ — 0 does
not cover all possible constructions available for the case p = 0.

We consider the solution to (30) and (31)
u(x) = Gl (x = y)f(y)dy,
[0,1)3

where G%; satisfies

(A +1?) Gl(x—y) = d(x—y)
Ghyx—y+n) = Gx-Yy).
We obtain G‘I; by applying the method of images to the free space Green’s function,

1 e—mlxll2
GH

free (X

IRZEET
this time yielding (for x ¢ Z3) the absolutely convergent sum,

32 en i 0,1 and 1 > 0
= — ————, X € > 0.
( ) H(X) 47_[_2 HX_’_nH27X [7 ] and [
nez3
By Proposition 4, all elements of the non-standard form for (32) are given by absolutely convergent
sums and the usual method of images and that applied to the non-standard form coincide.

In the next proposition, we explicitly obtain values of the elements of the scaling part of G‘ﬁ as
functions of p which, for u = 0, are given by conditionally convergent sums. Later, in Section 4, we
compare these elements with those for the Poisson kernel.

Proposition 7. Let 7;?,;;%0(;1) with i = (i1, i2,3) andi = (2,1, z'/2, zé) denote an element of the scaling
part of the periodized non-standard form of the operator of kernel Gl (x) in (32). It holds that
(i) Ifi=1 =0, we have

. 1
700
00;00(#) = _#2~
(i) If for any j, 1 < j <3, i; —I—i;- 1s odd, then 7ii:’;-(())0(:“) = 0. In particular, if |i+1| =1, then

7;?’;;%0(“) =0.
(iii) If [i + 1] = 2,

0 forie {(1,1,0), (1,0,1), (0,1,1)} and i = (0,0,0),
. . _ 2\ on_ 2
Tefno() = Tepa) = § L0 ) ZQRM0m0m) g — ¥ € {(1,0,0), (0,1,0), (0,0,1)3,
0, forie {(2,0,0), (0,2,0), (0,0,2)} and i = (0,0,0).

For p — 0, we have

. ;0 T ;0 o 1 s s/
(33) }}_H;(l) 7;?’;00(“) - }L% 7;%;00(:“) - @7 fOT 1=1 € {(17070)7 (07 170)7 (0707 1)} ‘
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See Appendix 8.6 for the proof. The formulas derived in the proof may be used to explicitly compute
other elements of the non-standard form.

4. Po1ssON GREEN’S FUNCTION WITH PERIODIC BOUNDARY CONDITIONS

In this section we consider the problem

(34) —Au(x) = f(x)

(35) u(x+n) = u(x)

for x €[0,1]3, n € Z3 and f € L?(]0,1]*) satisfying the mean-free condition

(36) /[0’1]3 f(x)dx = 0.

Due to the slow decay of the free space Green’s function

1
37 G ree\X) = —7
(37) free(X) =T

the usual method of images produces a divergent series,

38 ree
(38) >_ Grreelx+ 1) 47TZHx+nH2

neZ3

However, in our approach to obtain the periodized non-standard form, no “interpretation” of (38) is
required, since we apply the method of images not to G sy but to its non-standard form. Moreover,
using that G .. satisfies Proposition 4, all elements of the wavelet part of the non-standard form
G, converge absolutely for any multiwavelet basis with number of vanishing moments m > 3. Thus,
to construct G, we only need to examine the elements of the scaling part of the non-standard form.
By selecting square partial sums as a method of summation (see (26)), these elements are computed
as

0
(39) 7;?00— 11m Z Turz)o__ﬂj\}l_lfloo Z /

* Infle<n [nlle

li+i'] >0,
1,1)3 ”X‘*‘HH

yielding a particular Green’s function G),. We remark that other conventions may lead to different
variants of the periodized Green’s function consistent with the free space operator G (see also
Remark 9 below). Note that we do not use the sum in (26) to define the element, i =i’ = 0, since
in this case it would lead to a divergent sum (see Theorem 8). Instead, we set the value of this
element to zero which effectively restricts the domain of the operator G, to mean-free functions
f. Surprisingly, the Green’s function G), resulting from our summation convention (26), is not a
convolution. This is consistent with the fact that the sums in (39) with indices 1 < |[i + 1| < 2
are conditionally convergent and, some of the resulting elements, are not limits, as p — 0, of the
corresponding elements of the convolution operator in (3.4) (see Proposition 7).

Theorem 8. Let us consider the non-standard form of the operator G fye. (37) in a multiwavelet
basis with m > 3 vanishing moments. Then

(i) The lattice sums in (24) defining wavelet part elements of the periodized non-standard form

(2x+1 -1
= e s [ e

nezZ3 nezZ3 HX+HH2

converge absolutely.
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(ii) For |i+1i'| > 3, the lattice sums defining the scaling part elements of the periodized non-standard
form (25),

40 dx,
( ) i/ 00 471' Z/113”X+I1H2

nezs
converge absolutely.
(ii1) For 1 <|i+1| <2, the lattice sums in (39) for the scaling part of the periodized non-standard
form

: 1 ()
) 0 = -—— lim / T gx,
o ||n||§<N EERIEH R o ¥(P)

converge conditionally.

(iv) For |i+ 1| = 0, with the summation convention (iii), the lattice sum for the element 7'006?00
diverges. By setting it to zero, 7'006?00 = 0, we effectively restrict the domain of the periodized
operator to the class of functions with zero mean f[o,l}?’ f(x)dx = 0.

See Appendix 8.4 for the proof.

Remark 9. The fact that only a few elements of the non-standard form are given by conditionally
convergent sums permits a characterization of all possible versions of the periodic Poisson Green’s
function. Our approach offers a unified way of constructing such Green’s functions and, perhaps, ex-
plains difficulties encountered in their usual interpretation. Some of these different periodic Green’s
functions may be found in the literature [19, 15, 30]. The fact that in computing the periodic
Poisson Green’s function one encounters conditionally convergent sums is well known. Assigning
different values to such sums explains the differences in e.g., [20] and [32] approaches to lattice
summation. A particular choice is made in the context of the Fast Multipole Method [23, Section
4]. For a discussion of this issue see |22, Section 3|.

In the next proposition we obtain the values of several elements 7;(1),;,%0 of the non-standard form.
In particular, we obtain all values of the elements given by conditionally convergent series. Recall
that those elements correspond to indexes satisfying |i +i'| < 2.

Proposition 10. Let 7;?,;_%0 with i = (i1,19,13) and i = (1/1,2’2,1;)) denote an element of the scaling
part of the periodized non-standard form of the operator of kernel Gfree in (87). It holds that

(t) If for any j, 1 < j <3, i; + z; is odd, then 7—0'00 = 0. In particular, if |i + 1| is odd, then
0

ii’;00 — =0.

(ii) If i+ 1| = 2,

0 forie {(1,1,0), (1,0,1), (0,1,1)} and i’ = (0,0,0),
o0 = Toioo = & Jori=1€{(1,0,0), (0,1,0), (0,0,1)},
—ﬁ, foric {(2,0,0), (0,2,0), (0,0,2)} and i = (0,0,0).

See Appendix 8.7 for the proof.

Remark 11. If in the Proposition above |i + i'| > 3 and one of the coordinates of the multi-indices
is zero, e.g. i = (i1,i,43), i’ = (0,iy,45) but 4, > 0 then

0
ii’;00 — 0.

See Appendix 8.8 for the proof.
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We observe that the non-zero values of 7;32%0 and 760;;%0 for |i4 1| = 2 are due to the slow decay of
the kernel. Indeed, comparison of Propositions 7 and 10 shows that, for some indices ii’, the limits
of 7;?,5;%0(,11) as 1t — 0 do not match the values of 7;?,;;%0 in Proposition 10. Thus, this mismatch may
be attributed to the slow decay of the Poisson kernel. On the other hand, there is no mismatch
for all terms defined by absolutely convergent sums since in that case the order of summation and
integration may be exchanged.

Moreover, if we were to modify Gy, outside of an arbitrarily large ball of radius R as to increase

the rate of decay from 1/R to 1/R'*® § > 0, then no mismatch will occur in e.g. the elements with
indices i € {(2,0,0), (0,2,0), (0,0,2)} and i = (0,0,0). In fact, a much stronger result is true.

Proposition 12. Consider a kernel G(x1,x2,x3), locally integrable, even on each coordinate and
such that, for some positive § and M, its partial derivatives satisfy

(42) 1Ga; (%)l2 < i HQM’ for |Ixl2 = M,

where C' is a constant. If ¢;, 1 < j <3, denote three bounded functions on [0,1] and one of them
is odd about 1/2 then

N—oo

lim Z /[ ” (,01(2171)(,02(332)(,03(2173)G(l‘1 +ni1,T9 + N2, 3 + ng)dx =0.
Inlloo < 101

In particular, the scaling elements of the periodized non-standard form of G, TIO vanish for

i {(2,0,0),(0,2,0), (0,0,2)} and i’ = (0,0,0).

;00

See Appendix 8.9 for the proof.

Remark 13. We may also consider the limit using the oscillatory Helmholtz kernel e**" /7. Sending
k — 0 (as in [10]) yields a particular periodic Green’s function for the Poisson’s kernel also obtainable
by Ewald’s method [20].

Thus, in practical applications, the selection of the Green’s function of the periodized Poisson kernel
may depend on physical considerations that either emphasize the long range behavior of this kernel
or use its properties only in a finite region. The effect of such choice on the solutions and their
behavior on the boundary of a periodic cell is further discussed in the next section.

4.1. On mean-free and weak solutions of the periodic Poisson equation. Let us show that
our construction yields a solution of the periodic problem (46)-(47) that is not mean free which,
in turn, implies that the periodized operator is not a convolution. Note that if u is a solution of

(46)-(47), then

(43) )~ [ vy

is a mean-free solution of the same problem. However, in our construction f[o 13 u(y)dy may not
be zero as we demonstrate below. Since

(44) /[0’1]3 u(x)dx:; oi- 00/ [y, w2, 23)0, O(wl)w 0(1’2)1/1 O(wg)da:ldxgda:g,,

where ¢,/ are the one-dimensional scaling functions defined in (1), from Theorem 8 part (iv) and
]7

Proposition 10, we conclude that the only non-zero terms of the sum in (44) correspond to the three
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multi-indices i’ = (0,0,2), i’ = (2,0,0) and i’ = (0,0,2). Hence, we obtain

1
/ ’LL(X)dX = —— f(:l?l, x9, l‘3) [P2(2:E1 — 1) + P2(2l‘2 — 1) + P2(2:E3 — 1)] dxridrodxs.
[0,1]3 36 Jpo.a

Expanding P5(2t — 1) = 1 — 6t + 6t2 and using that f is mean-free, the last equation is equivalent
to

1
(45) /[0 o u(x)dx = G o f (@1, w9, 23) (21 + @2 + 23 — -l — x%) dzidzodrs.

This last condition is also derived in the literature (but with more restrictive assumptions on the
function f). See, e.g., [5, Eq. 29|, [26, Eq. 38] or [29, Eq. §|.
Further analysis of (45) leads us to consider the weak formulation of the problem (46)-(47),

(46) / Vu(x) - V(x)dx = / F(x)(x) dx
(0,13 [0,1]3
(47) u(x+n) = u(x)
where the test functions ¢ € C°°([0,1]3) are supported on [0, 1]? and also satisfy (47). Defining
(48) po(x) = 1 + a2 + 3 — 25 — 23 — 23,

and integrating by parts on the left hand side of (46), yields

fX)po(x)dx = 6/ u(x)dx — / udS,
[0,1] [0,1] a([0,1))

where 9 ([0,1]*) denotes the boundary of the unit box and dS is the measure on 9 ([0,1]*). Com-
bining the last equation with (45), we obtain that our construction produces a solution with the
additional property

(49) / wdS =0,
a(0,1]?)

i.e., the integral of the solution over the boundary vanish.

4.2. An analytic expression for the periodized Green’s function. The non-standard form
approach for the construction of the periodic Poisson kernel provides the coefficients in the mul-
tiwavelet basis of a solution u for the problem (34)-(35) under the assumption (36). The solution
u so obtained is not mean-free and satisfies the boundary condition (49). Let us now describe
analytically the Green’s function that yields this solution for the problem. Let us consider

2min-x

_ e 2 3
GO(X) - Z 47_[_2”nH2 €L ([O, 1] )
n#0
Formally, G solves the problem
(50) ~AGy(x) =-1+ > d(x—n)
nezs
(51) Go(x +n) = Go(x),

where > s §(x — n) is the periodic delta function (for the box [0,1]*). The mean-free condition
(36) on the function f yields a solution u for the problem (34)-(35) as

u(x) = Go(x —y)f(y)dy.
[0,1]3
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Since the periodicity of Gq yields
Go(x —y)dx = Go(x) dx
[0,1]3 [0,1]3
we also have that the solution u is mean-free. We now modify G as to obtain a Green’s function

G yielding the boundary condition (49). Note that for y = (y1,%2,%3) € [0,1]3,

27rmJ Yj

3
1

— 2 _ . - _ Z

(52) /8([071}3)(} (x—y)dx =2 g g 4772 = E (y; —y; +1/6) po(y) + 5

Jj=1mn;#0 j=1
where pg is the polynomial in (48). Let’s define for x,y € [0,1]3
G(Xay) = GO(X - y) + Gl(X,y),

where
3

1
Gi(xy) = =5 | IxI*+lyl” - 2) Y
j=1
which we extend periodically as G1 (x+n,y) = G1(x,y) and G (x,y+n) = G1(x,y) for x,y € [0,1]?
and any n € Z3. Although —AG(x,y) = Y, czs 6(x — n), we observe that G is not a convolution,
since || (x —y) (mod1)||? # ||x (mod 1) — y (mod 1)||?, where mod 1 indicates periodization on the
unit box. For the Green’s function G, the corresponding solution u satisfies

u(x) = G(x,y)f(y)dy,
[0,1]3

yielding

1 1
/[071}3 u(x) dx = /[071}3 (/{071}3 Gi(x,y) dx> fly)dy = 6 /[0’1]3 (poly) — 1) f(y)dy = S /[071}3p0(y)f(y) dy,

which coincides with (45). On the other hand, combining

7
| Gixy)ix=—{ +m(y)
9([0,1]?)

with (52) we obtain

/ u(x) dx—/ / (x—y)+Gi(x,y)) dx f(y)dy = 0.
a([0,1]3) [0,1]3 Ja(]o, 1]3

We refer to e.g. [4] for a different construction of Gy.

5. SEPARATED REPRESENTATIONS

We use approximation via Gaussians as a tool for constructing separated representations of operator
kernels to obtain fast algorithms for their application. Such approximation separates along each
coordinate direction, thus simplifying the computation of the non-standard form and yielding a
fast algorithm to apply the operator. Approximation via Gaussians (see e.g. [11, 12, 13, 14]) has
been successfully used in [24, 9, 6] to construct fast and accurate algorithms for applying free space
convolution kernels for any user supplied finite accuracy. Our goal in this section is to extend this
approach to periodized kernels constructed in Sections 3 and 4.

As an example, we consider convolutions with kernels of the form

(53) K (x) = p1(a1)p2(w2)ps(w3)|[x[|; 7 e #Ixl2,



MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH BOUNDARY CONDITIONS 17

where 8 and p are non-negative parameters, both not simultaneously zero, and p,, is a polynomial,
v =1,2,3. We note that both, Htz_ﬁ and e HIXll2 or ||x||2_ge_”||x||2, may be efficiently approxi-
mated by short sums of Gaussians for any user selected accuracy € and distance from the origin §
(see Theorem 6 and Proposition 8 of [14]). In fact, the number of terms is shown to be proportional
to logd~! and (log 6_1)2 (although in practice we observe essentially loge~! dependence). Substi-

tuting in (53), the approximation by Gaussians of ||x||; Fe—nlixllz yields a separated representation
of the free space kernel K.

In this section we show that the periodized operator has a separated representation as well. Once
equipped with the separated representation of the non-standard form, we may use the algorithms
described in [24, 9, 6] (with minor modifications) to apply the periodized non-standard form. Such
algorithms have the same complexity as those for the free space operators.

We may write

(54) rf— GB(T‘)‘ <er P foral §<r<R,
where

Ng
(55) Gs(r) = ape

n=1
with positive a,, and «,,, and
(56) Gs(r) < (e+1)r~P, for all > 0.
The bound (56) may be obtained following the derivation of [14, Lemma 4]. We may also write

o €

(57) |€ H —GM(T)‘ S E—I_—l, fOI'(SSTSR,
where

NM
(58) Gulr) = dpe™™"

n=1

and d,, and n,, are positive. Hence, combining (54)-(58), we obtain a sum of Gaussians approximation
for 7=Pe~H" in the range r € [6, R,

69) [t - @G| < | - Ga)] e

+ ‘ [e_‘” - Gu(r)] Gg(r)| < 2er~P

The number of terms in the sub-optimal approximation Gg(r)G,(r) may be reduced further by
using the reduction algorithms in [13, 14]. As a consequence, we obtain an approximation of the
kernel (53) as

K(x) = pi(a1)p2(2)ps(23) Y wie ™ X = 37wy py (21)e ™5 py (20) e ps (25) e,
m=1 m=1
where the number of terms, M, depends logarithmically on € and J, and the parameters 7, and wy,
are positive. Due to the functional form of K, the non-standard form inherits the separation along
each coordinate direction and we obtain

M
(60) Tj;l—l’ _ w il =1 ila—15 ils—15
ii’;ss’ MYi14) 55180 5m51 Vigdh;s25h;m;2  i3ih;8385;m;3”
m=1

where

(61) ;l&i ;MY / /p'y T — Tm(x_y)zwi’i(m)w?/’l;/(y)dxdy’
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Thus, in order to compute lel,ls_sl,l, it is sufficient to evaluate one dimensional integrals with the

cross-correlations of the scaling functions (see (20)),

fﬁég;ﬂ = / py(@)e™ ™ By (207 41— 1')d
b b b R

and then apply the quadrature mirror filters for the multiwavelets (see [3, eq 3.25a 3.25b 3.25¢
3.25d|) to construct all the coefficients il for s = 11,10,01. We note that to apply the

1i’;s8"ymyy
operator we may also use the modified non-standard form [6] which only requires the projection of

the operator onto cross-correlation functions of the scaling functions.

Applying the method of images to (60), we obtain the coefficients of the non-standard form of the
operator with periodic boundary conditions,

M
e E e U 3l —1; ila—15 Jils =15
(62) 7;i’;ss’ - 2 : wmtili’l;sls’l;m;ltizi’Q;szsé;m;2ti3ig;333’3;m;3’
m=1
where in each direction
=l . il=U+2in
(63) it';ss!ymyy T it';88"myy 0
nez

with Eg Z,l;il,ts]f defined in (61). Clearly (62) is in separated form with the same separation rank
as its free space counterpart (60) and, moreover, (63) provides a simple recipe for computing its
components.

Tj;1—1’+2jn

Remark 14. By first computing the blocks T3 o of the non-standard form of the free space

approximation K, we have a simple way to evaluate via (63) the corresponding blocks ’7?,15;,1, for

the approximation of the periodized operator. Since the norm of the blocks t?l,l;il,ts? in (63)
decays rapidly with n, only a few terms participate in the sum for a given accuracy. In fact, on
finer scales (large j) only the term with n = 0 needs to be kept. We may estimate the error

' T 14 ~ s 11 o P 1 « o
7;{,’;155,1 - i{,’;lss} , where 7;{,’;155,1 are the blocks of the non-standard form of the original operator

K, by using Proposition 4 together with the estimates for ‘7}%5;1,/—%2]11 — Ti]i'fs_sl,q_yn‘ given in |9,
Theorem 4]. However, an exception to using (63) for computing operator blocks has to be made for
conditionally convergent elements on the coarsest scale whose definition reqiures special attention

(see Proposition 10).

Remark 15. Our approach applies to any Bravais lattice. We note that for a non-rectangular lattice
the non-standard form does not separate along each coordinate and further approximations are
required.

6. DIRICHLET, NEUMANN AND MIXED BOUNDARY CONDITIONS

Using the results for the periodic case, we now have the necessary tools to efficiently apply operators
with Dirichlet, Neumann or mixed boundary conditions on simple domains. We note that although
the resulting integral operators are no longer convolutions, they have a simple algebraic structure
and, as a result, the algorithm for applying these operators is similar to those described in the
previous section.
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As an example, let us consider the problem

(64) (-A+p?)u(x) = f(x) for x€D

(65) u(x) = 0 for x € 9D,

where 1 > 0 and D = [-1/2,1/2]3. A solution to (64) which satisfies (65) is given by
/ GH(x,y)f(y)dy,

where G* satisfies

(66) (~Ax +4%) GH(x,y) = d(x—y)

(67) GH(x,y) = 0 for xe€ 9D

and Ay denotes the Laplacian with respect to x. Let us first consider the case where p > 0. Even
though the integral operator G* is not a convolution, it may be written as

T1—Y1 T2—Y2 T3—Y3 T —Y1 T2—Y2 T3+ys+1
G* = G% - G%
(,¥) H ( > T 2 ' 2 > H\"T3 T2 T 2
e (i zot+y2+1 x3+ys+1 e (B ro+y2+1 w3 —ys
H 2 2 ’ 2 H 2 2 T2
e r1+y1+1 xo—y2 w3 +ys+1 _am r1+y1+1 zo—y2 w3 —ys3
" 2 o2 2 2 22
rTi+y1+1 zo+y2+1 23 —y3 T+ +1 zotya+1 x3+ys+1
68 G% - G%
(68) + Gy ( 2 ’ 2 ) 2 ’ 2 ' 2
where the periodic Green’s function G%; is constructed as in Section 3.4 to satisfy
1
(69) 5 (“Ax+4p%) Gy (x —y) = 6(x —y).

The changes in the equation relative to (66) are due to the way variables appear in (68) and to the
dimension of the space, d = 3. Since G% has period one and is even in each variable, for x € 9D
the terms in (68) cancel each other so that G* satisfies the Dirichlet boundary condition (67). For
x #y inside D, we have (—Ax + p?) G*(x,y) = 0 since each of the eight terms in (68) vanishes.
The only singularity is at x =y, in which case the first term in (68) yields (66).

The non-standard form of G* is then constructed by using Propositions 4 and 7 for each term in
(68). However, in contrast with Proposition 7, part (i), in the next proposition we show that the
element 7'5]6?00 of the non-standard form of G* is finite as ¢ — 0. This allows us to obtain G* for
u = 0. We note that, unlike the periodic Green’s function, the Green’s function for the Dirichlet
problem is unique.

Proposition 16. The element 7'006?00 of the non-standard form of G is given by

-2

—2 -2
B g TR 3 VRS ()

0000 2
s (n1+ 3)? +(n2+%)2+(n3+%)2+(%)

which converges to a positive constant as p — 0.

Proof. Using (22), we write the element 7—(;)6?00 of G* as

8
/ G (x,y) dxdy = / / S ()G (a(x,y)) dx dy,
D3 Jp3 D3 Jp3 1=

)
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where q;(x,y) denotes the argument of the [th term in (68). As in the proof in Section 8.6, we
compute the Fourier coefficients of G%;(x) and obtain

1 o—2ullx-+nl2

o Z x+mnly Z ene™

nez3

Gy (x) =

1 1
T
2 g ng(5)]

8
(70) 00 00 = Z cn/g/32(—1)”162““'“1("’3’) dxdy.
D% =1

nezZ3

with ¢, = Integrating to obtain 75)00007 we write

Note that the integrand Zl (= 1)i+1e2mma(xy) may be expressed in separated form as
(ezmnl(”QW) B e2mn1<w1+gl+1>> <62mn2(””22y2) B ezmnz(’”2+32“)> <e2m'n3(””32y3) B e2mn3(’”3+33“)>

so that [ [ Z?Zl(—l)l+162“i“'“l(x73') dx dy equals to

ﬁ// <62mnj(’”12yj) _e2winj<”j+?24j+1)> e dy;
i=1/pJp
3 oy .
= H/D/D (em”f’( ) _ glina (4 gﬁl)) da; dy
j=1
3 e
= H/D/De%mj( 7 (- o) d;j dy;
j=1

where, for each j, we changed variables y; — —y;. Therefore, we may rewrite the series (70) using
n = (ny,n2,ng) with only odd indices n;. Thus, we compute

// 2ri(ans +1)( 2y3>dx]dyj /2 o2miln+5)1; dx;

1
2
Combining integrals in each coordinate, we obtain the result. O

6.0.1. Separated representation of G*. The number of terms in the construction of the Green’s
function satisfying boundary conditions in (68) grows exponentially with the dimension, i.e. if
d = 2 we have four terms, of d = 4 we have 16 terms, etc. On the other hand, the number of terms
in the separated approximation, G¥, of G is independent of the dimension. Indeed, using (59), we
approximate G* by

M
(71) éu(xay) = Z W Z Sm,nl(xhyl) Z Sm,nz (‘T27y2) Z Sm,ng(x37y3)
m=1

n1€Z no€Z n3€”Z

where

—Tm (x—y+n)? —Tm (z+y+n+1)2

Sm,n(xay) =€ —€
In other words, the approximations of individual terms in (68) combine to yield (71). Thus, to

construct the non-standard form of G*, we only need to compute the integrals,

gl / / “rm(amytn Pyl ()l (@) dady



MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH BOUNDARY CONDITIONS 21

and
45754+ 427 (n+-1) +y+1+ 5, 7,1
tzz ;88'sm / / ety ™) ¢7, 5( )1,!)278(:17)d:17dy
for j € Nyn € Z, I,I' € {0,...,27 — 1}, 4,7 € {0,...,m — 1}. The integrals _tgllsitsjn and
+tgll Sits " are simplified further and reduce to one dimensional integrals using cross and auto-

correlations of wavelet and scaling functions (see Section 5). As a result, the non-standard form is
given by

M . . .
7—1’;11’ _ w sy 7j5laly ilaly

ii’;ss’ = MYi14] ;5181 5m igih;s285;m i31%;5355;m

m=1
where
fj%ll, _ § t] = +23n _+ t] d4+U+29n
it';88'm T it;88";m it’;88";m :
nel

Remark 17. Although we discussed the Poisson Green’s function with Dirichlet boundary conditions,
this approach extends to any operator which is effectively sparse in the non-standard form and whose
kernel may be approximated by a separated representation. Also we may use the same approach
for operators with Neumann or mixed boundary conditions.

Remark 18. We note that the Fast Multipole method provides an alternative approach to the
treatment of boundary conditions, see [23, Section 4].

7. CONCLUSIONS AND REMARKS

We have described an approach to construct and apply a class of operators with periodic boundary
conditions. The non-standard form of the corresponding free space operator provides the foundation
for our approach and allows us to analyze these operators on a hierarchy of scales. This analysis
is operator independent and reveals that the wavelet part of the non-standard form is always well
defined. Depending on the properties of the kernel for large arguments, we have shown that the
scaling part of the non-standard form may have elements which require special attention. With the
use of separated representations via Gaussians, we obtain fast algorithms for application of these
operators that are minor modification of their free space versions.

For simple domains, we construct Green’s functions satisfying Dirichlet, Neumann or mixed bound-
ary conditions also yielding separated representations of operators and fast algorithms for their
application.

We would like to note that it may be possible to use our approach as a tool for constructing
Green’s functions for finite size lattices. While interior cells may be well approximated by a periodic
construction, cells near the boundary usually require a different approximation. In this scenario
Fourier methods are not available since the Poisson summation formula no longer applies, while the
direct summation is not computationally effective. In contrast, the multiresolution approach (for a
given accuracy) only requires modifications in the vicinity of the boundary on all scales except for
the coarsest. Indeed, due to the rapid decay of the lattice sums on wavelet subspaces, only a few
elements are affected by their neighbors.
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8. APPENDIX

8.1. Properties of cross-correlation functions. We use the following properties of ®;;(z) which
follow from [9, Proposition 3 |,

(72) Oi(z) = (1) 0yi(z),
(73) p(—z) = (1) 0u(z),
(74) Dig(l —x) = (=1)"dy(x) fori >0,z €|0,1],
(75) (1)00(1 — $) = 1- <I>00( ) for z € [0, 1],
1
(76) /_ () = 1

8.1.1. Moments on the interval [0,1]. From the definition (2), we have

1
(77) o) = VI F 1 / P2t — 1)dt, > 0.
In particular,
(78) Dip(1) =0, i >0
which, together with (74), implies
(79) Bip(0) =0, i > 0.

Integrating by parts

1 k1N o T rl
/ Pjo(z) (_a: > dx = ::_—Fll / P2z — 1) do
0 0

E+1

and using the orthogonality of the Legendre polynomials, we obtain

1
(80) / ®io(x)zide =0 for i > k+1 and k> 0.
0

8.2. Proof of Proposition 2. It is enough to prove the proposition for |l — I'| > 3 since the
general result follows by modifying C; to include the case |l —1'| < 2. We first prove the estimate for

Tfllllé Jz (fR ( )d$> j;ll dy‘ Denoting I; = [2771,277(1 + 1)], we note that the

multiwavelet ¢j ) s Supported on I and the scaling function 1/)] on Iy. For each y € Iy, consider
the Taylor expansion of the function K (- — ) centered at xg = 27771(2] + 1), the mid-point of I;,

K(V_l) xro0 —
Ko —y) = K(rg — )+ o W gty
(v—1)!
where v = min {m, m} and ¢ is between x and ¢ and, hence, { € I;. Since the multiwavelets have
vanishing moments (4), for 0 <n <v —1

o (L= ar i) & - i =

n!

W) (g —
ik ) Ef, y)(iﬂ—xo)y

For the remainder term in the Taylor expansion, using (12), we obtain

1 il ) jit Cv vl

o1 w0 vli@) [ K€ —ypliiwiydr| < | @ a0 elio)
: 1

v!
v
f,;o(y)‘ dydz.

1
& .Aﬁé—y
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Using Hoélder’s inequality and ||’11Z)Z],70l|| r2(r) = 1 we estimate

1 1 1/2
g;l! <
/zl, € —y|7+5 Haw|dy < </zl !S—yP(’”B)dy) |

1 1 1/2
< giw8-1/2) ( / d>
8 0o H=T=(@—npP¥o™) =

where we changed variables u = 2/y — I" and used that ¢ € I; to write & = 277 (n + 1) for n € [0, 1].
Since |(u —n)| < 1 and |l — | > 3 we obtain

(82) =V ===l =V]=[w=m)| = I =V]-1= 0+ =T])/2

'/;l/
wz]";O ‘

L2(R)

The other term in (87) is estimated as

v, Jil 2v 12 Jsl 2—j—21/—2j1/
/Il (x — x0) wi;l(x)‘ dr < (/Il(a: — x0) dx) ‘1/;2.;1 ) =\ T
since [} 2@y = 1.
Combining these estimates we obtain the result with
Ci— v 9i(B-1)+5
NG
The proof for ‘Tiilo_ll/‘ and TZJZ}II” follows in a similar fashion because on each of these terms at

least one multiwavelet is present.
It remains to prove the estimate for ‘Egjfa(f/ — f_ll Kxz+1- l’)@ii/(:p)dw‘. First assume i + 4" > 1.
This time we use the Taylor expansion of K (- — (I’ — 1)) centered at zo = 0, so that

v—1
K®aq-yr KW (I -

n! v!

n=0

where v = min{i +i,m} > 1 and & is between 0 and x € [—1,1] , and thus || < 1. Due to the
vanishing moments of ®;; (3) the first v terms in the Taylor expansion vanish. Using (12)

b e (2))|
< [ (23 d
- /1|5+l—l'|u+ﬁx

cya, 2V P
V(1|1 1)) P

1 v
‘ / TKW(E+1- 1)y ()da
1 V.

where a, = max; ; {f_ll |z¥ @i ()] d:p} and we estimated

(83) E+1=V === gl =1 -T]-1=A+][I-1])/2
using €] <1 and |l — I'| > 3. The result follows with
Co = 761/@”2”4—6.
V!

For the case i =i’ = 0, we first use (12) to bound the kernel and then apply an estimate equivalent

to (83).
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8.3. Proof of Proposition 4.

Proof. Tt is enough to prove the result for |1 — I||; > 2v/d 4 1 since the general result follows by
modifying C; to include the case ||l — 1|2 < 2v/d + 1.

We first prove the estimate for
;1-1 i1 j;1
(84) it = [ [ ey owiteodvax,

with ss’ ;é 00. Let’s assume that s # 0 and denote I} = [279];,2~ 3(11 +1)] X [27914,279 (14 +1)].
Thus, \I'] "~ is a multiwavelet supported on I} while the function \I’], - is supported on Iy. For each

y €Iy let‘ us consider the Taylor expansion of the function K (-— y) centered at
xo = (277712 +1),...,2797 (214 + 1)),

1 1
(85) K@—N):g;JﬁD”ﬂMVﬂWX—X®a+%;E#WK@—YXX—ij
where v = min {m,m} and £ = (1 — 6)x¢ + 0x, with 6 € [0, 1] and, hence, £ € I;. We write
(86) §=27(m+1), ne 01"

Substituting (85) into (84) and using that the multiwavelets have vanishing moments (4), we observe
that all terms with |a| < v — 1 do vanish. For the remainder term in the Taylor expansion, using

(23), we obtain
>

”LQ(Rd) =1 yleld

oo ‘/ 1€ — y”alﬂi‘ s ‘dydx

Holder’s inequality and H\Ilj v

i’;s’

1 1 1/2
el y|dy < ( / —dy) .
/,1, us—yu'z“ﬁ‘ ’ ‘ v 16 =y ade)

By changing variables u = 2/y — I’ in the last integral and using that y € Iy and (86) we obtain

1 . _ 1
— _dy = 2%(lal+A)=id / i
/f’ e =yl 0.0¢ [l — u +1— 1[0

Since || — ull2 < V/d and ||l = V|jz > 2v/d + 1, we estimate

.
D

and therefore

1/2
1 . . “lal—
—d < 9=4/29G+V)(lal+8) (1 1+ 1 =1 lo =5
(/, €=y y) ) )

Substituting the last inequality into (87), we now bound the integral

J

9—di/29~(i+D)la]

ey 1, V2ar + 1)

: 2.
(x — xo)o‘\Ilffsl(x)‘ dx < (/ |(x — X())Za‘ dx) H\Ilf’sl
) Il b
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J;1
ijs

=1 and
L2(R4)

where we used H‘IJ

d  27i(l,+1) <

oc-xo™|dx = T [

) 1 200
t—279(l, + —)) dt

I o Ja-i, 2
i [ () e
r=1 0 r=1 r
Combining these estimates we obtain the result with
It remains to prove the estimate for
(88) Tiloe = /[ . K(x +1-1)® (x)dx.

First assume |i + 1| > 1. This time we use the Taylor expansion of K (- +1—1) centered at the
origin, so that

1 (0% (0% 1 (0% (0%
Kx+1-T)= > SDUEQ-1)x® + > S DUEQ -1+ 03,
lal<v—1 |a|=v
where v = min{|i+i|,m} > 1 and 6 € [0,1]. Substituting into (88) and using that ®;; have

vanishing moments (3), we observe that all terms with || < v — 1 do vanish. For the remainder
term in the Taylor expansion, using (23),

IRV, APy (x)| Call 2lol+58
T(?;_“(g c—“/ P dx < ola ,
e g:: ol Jema e (1= + ox |57 EZ:V ol (L 1— V)P
where a, = max; y |o|—y {f[_l 14 |x Py (x)] dx} and we estimated
1+ 1=
(5) L1 4 x> - Ty — [ > 1 V) - va > =T

The result follows with

CO = 2”+B Z CaCfa.
Q:

|a|l=v
For the case i =i = 0, we first bound the kernel in (88) and then apply an estimate equivalent to
(89). (]
8.4. Proof of Theorem 8.

Proof. The absolute convergence in (i) and (ii) follows directly from Proposition 4 with g = 1. For
(iii-iv) we use the Taylor expansion

1 1 X-n x||2 3(x -n)? 1
(90 ~ - T - e+ S 0 ()
[x+mnl2  [nfz (03 2(nl3  2(n3 [n]3

for x € [~1,1)3 and n # 0 . Note that the case n = 0 corresponds to the the elements of the
non-standard form of the free-space Green’s function, which we assume well defined and that the
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remainder term in (90) leads to an absolutely convergent sum. We proceed by substituting the first
four terms of the expansion (90) into the integrand of (41), and consider

. 2 )2
(91) lim Z / ( Lo_xon Ixll; | 3(x ns) )@w(x)dx.
[-1,1]3 [nf3

N 2 Il ZI RSP
n#O

By symmetry considerations and using that ®;(x) = P4 (z (x )‘I’m (x2)® il

i (r3) is a separable
function, we now check that the last three terms of the Taylor expansion in (91) le

ad to a zero sum.

In fact,
Yy k=0, k=123,
i 11112
n#0

because the sum contains indexes of the form n and —n which cancel each other. For the other two
terms, we write

Ix[l3 |, 3(x-n)* 1

2l 2[n|3 2||n]|3
(92) +6n1n9x1xe + 6N1N3T1T3 + 6n2n3x2x3)
and note that

(:17% (2n% — n% — ng) + :17% (Zn% — n% - ng) + xg (an - n% — n%)

Inllco<N [l

n#0
Yo I 0, kK =1,2,3
Inllco<N Hn”2
n#0

where we used, for the first sum, an appropriate change of indexes and, for the second sum, we
added first over terms of the form nj — ny. The convergence is conditional since

2
Z |nkL, Z &, Z |nkn;§| — oo0as N — oo, kK =1,2,3.
B 3 2, Tnl;

[Infloo <N Inlloo <N
n#0 n#0 n#0
It remains to consider the term 1/|n||z in (91). Due to vanishing moments of ®;;/,
1
(93) / —@ii/(x)dx = 0, ’1 + i,‘ > 1,
[—1,1]2 [n]2

which finishes the proof of (iii).

For i = i = 0, we first use that ®(g is even and that the sum over n is the same as the sum over

—n to rewrite
/ 7{)00(}() dx =8 Z / 7{)00(}() dx
Inllen /LA [x +nll2 Il o< /1011 [x +nl2

For x € [0,1]® we have

9 Bool) = (1—)(1 )1~ 22) = (iten) + 3 ) (iten) 43 ) (il 43 )

where p(t) = 1/2—t. By expanding the product in (94), we observe that, with the only exception of
the term corresponding to the product of the three constants, all other terms satisfy the assumptions
of Lemma 20 part (2). Hence, the value of 7}%?00 is

1 1
— lim / ———dxidxodxs,
41 N—oo Inflm< [0,1]3 HX"‘HHQ
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which, changing variables x; + x; —n; on each j =1,2,3 yields

1 . 1 1
— lim ——dx = —dx =
41 N—oo [-N,N+1]3 HXH2 471' R3 HXH2

Thus, the summation convention (41) yields a non-finite element 7606900. To deal with this situation,
we simply set the value of this element to zero which is equivalent to restrict the domain of the
operator to mean-free functions. O

8.5. Auxiliary results for the computation of non-standard form elements. The vanishing
moments and symmetries of the cross-correlation functions (20) allow us to explicitly compute
elements of the periodized non-standard forms. The relevant properties and how we use them to
compute these elements are captured on the following results.

Lemma 19. Let ¢ be a bounded function with odd symmetry about 1/2
(95) (1 —t) = —p(t), 0<t <1,
Then

Z/ h(t +n)dt = /lgp(t)h(t—l—N)dt,
_ 0

for any even function h such that the integrals exist.

Proof. Let I be
N

1
=y /0 o)t +n)dt.

n=—N

Splitting the sum in non-negative and negative values of n and changing variables t — 1 — ¢ on the
latter, the assumption (95) yields

N N
I = ;::0/0 gp(t)h(tJrn)dt—Z/o o(Oh(1 — 1 — n)dt
N o m 1
= ;::0/0 ©(t)h t+ndt—2/ h(t+n—1)dt = /Ogo(t)h(t—l—N)dt,

because h is even. O

Lemma 20. Let ¢;, 1 < j < 3, be three bounded functions on [—1,1] such that one of them, e.g.
1, 18 odd and let G(x1,x9,x3) be a locally integrable function, even on each variable. Then

(96) Aim > /[ | e1(21)p2(22)p3(23)G (21 + 11, 22 + n2, 73 + n3)dx =0
nflon T

Proof. Let C denote a constant whose value may change along the derivation. Observe that
/ Cp1(z1)pa(w2)p3(23)G(1 + 11, T2 + N2, T3 + N3 )dx
[P

is always well defined because ¢; are bounded and G is locally integrable. Let g(t) = G(t,z2 +
ng,x3 + n3) and isolate the sum over the index ny and the integral over x;. Splitting the integral
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over [0,1] and [—1,0] and changing variables 1 — —z in the latter yields

0]
Z/ g(xy +ny)dry = Z /cpl r1)g(w1 +ny)day
1SN

[ni|<N
— Z / (,01 :El £E1+’I’L1)d$1
[ni|<N

Since in the last term the sum over n; is the same as the sum over —n; and g is an even function,
the two terms in the previous equation cancel each other and we obtain the result. O

Proposition 21. Let p;, 1 < j <3, denote three bounded functions on [0,1]. It holds that

A: If 1 is odd about 1/2, then

(97)
9 1 1 1

g [ et 2 g ([Cena) ([Cen).

o e Y01 [x +nl[2 0 0 0

B: If ¢ is even about 1/2 and mean free, then
. 4,01(961) a7 ! 2
(98) lim / ———dx = —/ t*p1(t) dt.
N—o00 ||n||o.Z:<N [0,1]3 ”X + an 3 0

C: If ¢y is mean free, then

. ¢1(21) ! dm [,

(99) ]\}1_13100 ” Z /[071]3 Hx‘l-nHQdX = 271'/0 tor1(t) dt + 3/, t*p1(t) dt.
nfoo <

For simplicity, the proposition is stated for the Poisson kernel G(x) = |x||~!, but similar results

hold for any radially symmetric kernel with enough decay at infinity and, thus, to linear combination

of such kernels. However, due to the slow decay of the Poisson kernel, the proof of Proposition 21

is more challenging than the one for kernels with faster decay at infinity.

Proof. We use the same notation as in the proof of Lemma 20. Note that, the same argument given
in that proof shows that

L p1(21)p2(22)p3(23)
(100) SN B Z /[0 1] \/(xl + n1)2 + (xg + n2)2 + (xg + n3)2

[nlleoc<N

is well-defined for all N. To prove part A, we use Lemma 19 with h(t) = G(t,x2 + na, x3 + n3) to
write

(101)
1

Z / ©1 xl)G(azl + Ny, T +no, T3 + ng)dxl / gpl(xl)G(xl 4+ N,x9+no,x3+ ng)dxl.

In1|<N 0
The assumption of odd symmetry for ¢; implies fo p1(t)dt = 0 and, thus, 4,0[1} fo 1(t)dt,
vanishes at the endpoints of [0, 1],

1 1

(102) 21 (0) = (1) = 0.

Integrating by parts the last term of the identity (101) and using (102), we obtain

1
(103) Iy = / (x1 + N)gp[ll} (x1)G(x1 + N,xo + ng, x3 + ng)gdxl.
0



MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH BOUNDARY CONDITIONS 29

Hence, substituting (103) into (100) yields

(1]
(104) St = / (1 + N)py (1) p2(72)p3(73) —dx,
|na|<N,|n3|<N [0,1] ((:El + N)2 + (5172 + 7’L2)2 + (5173 + 7’L3)2)
Since
(105) (21 + N)2 + (29 + n2)® + (w3 +n3)2) /> < N3,

in the limit for N — oo, only the numerator term Ncp[ll] (z1)p2(x2)ps(x3) provides a non-zero

contribution in (100) and hence

(1]
(106) Si = hm S]"\', = lim N Z / 1 (21)p2(w2) s (3) 3/2d
Nooo <N msl<n 71012 (1 + N)? + (22 4 n2)* + (w3 + n3)?)

Isolating again the integral with respect to x1 and integrating by parts on that variable, we obtain

1 1
/ 4,0[11} (21)G(x1 + N, 29 + ng, 23 +n3)3de; = 4,0[12} (21)G(x1 + N, x5 + ny, x3 + n3)> .

0
1 2]
3(x1 + N x
0 ((z1+ N)2+ (x2 +n2)? + (23 + n3)?)

where gpl fO gp t)dt. Since the integrand of the right hand side is bounded by

C(N +1) ((xl + N2+ (w2 + n2) + (23 +n5)%) 2 < C(N +1)N 7,
the contribution of this term to the value of S% is bounded by

N (N +1) Z 1:C(N+1)(2N+1)2

¢ N N*

[n2| <N, |ns| <N
which vanishes as N — oo. It follows that
/ ©2(12)p3(w3) d
0,12 (14 N)2 + (29 + n9)? + (23 + n3)2)*?

St = gp[lz}(l) lim N
N—o0
[n2|<N,[ns|<N

By the same argument, this time integrating by parts first respect to xs and then respect to xs, we
obtain

1
5% = AW e (1) lim N
Ao n2|<NZ|;L3|<N ((1 + N)2 + (1 + n2)2 + (1 + n3)2)3/2

where g0[2 fo o (t)dt and gpg fo @3(t)dt. Let us denote

1

[ = lim N Z 7

oo [n2|<N,|ns| <N ((1 + N)2 + (1 + n2)2 + (1 + n3)2)
N+1 N+1 1

Sy YN
Nz Nt me=n1 (L4 N)? +n3 +n3)
Observe that we may consider the sums in the range |ng| < N + 1,|ng| < N + 1 because the limit
is zero when no or ng are set to —IN or —IN — 1. Therefore,

3/2°

1 1
I'= lim ——g
T, & )
[n2| <N+1,|n3|<N+1 <1 + (N+1 ) )
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and hence I is the limit of Riemann sums for the continuous function (14 z2+y2)~%/2 in the interval
[—1,1]2, yielding

1 2
I:/ 1+ 22 + 42 _3/2dxdy:2/ dy = =m.
[—1,112( ! FLy (A4 v2+yr 3
To finish the proof, note that 90[ ]( 1) = 90[1] ‘ — fO tp1(t)dt = —fO ty1(t)dt and gp[ }( 1) =
fo o(t)dt.
For part B, let us denote ¢ = ¢1. Since t — 1/2 is odd about 1/2 we have
1 1 1
(108) 0= / (t — 3 )elt)dt = / Lo (t)dt,
0 0

since, by assumption, ¢ is even about 1/2 and mean-free. Denoting the successive anti-derivatives
of ¢ by

t
(e = [ i s)ds,
0
where @l%(t) = o(t), we observe that the mean free property of ¢ yields
(109) 1(0) = (1) = 0.
Also, integration by parts and (108) yields

1
(110) A1) = - / bo(t)dt = 0 = 12)(0).
0

Thus, @) and ¢?) vanish at the endpoints of [0,1] and hence

(111) oB(1) = %/01 <%s2> o (s)ds = ;/013290(s)d8.

Similarly to the proof of part A, we use these properties of the anti-derivatives of ¢ to show that,
in order to compute

St = lim S§ = lim / de,
N—oo N—oo Info<N [_1’1]3 HX+11H2

it is enough to consider the sums over ny and ng within the range —N, N — 1 instead of —N, N. In
fact, let’s consider the term ng = N and integrate by parts. Using (109) we obtain

p(x1) _ oM (1) (@1 4+ m)
Tadx = 373 4%
0,12 ((z1 +n1)% + (22 + n2)? + (23 + N)?) 0,12 ((z1 +n1) + (22 + n2)? + (23 + N)?)
which, now using (110), equals
/ ol (21) n ol (21) (21 +m1)*
0,08 (21 4+ n1)2 + (32 + n2)2 + (23 + N)2)¥2 (21 + N)2 + (22 + n2)? + (x3 + N)2)*/?

Since

dx.

2 < (N +1)2N3

Z ((a;l + n1)2 + (332 + n2)2 + (333 + N)2)
[n1|<N,|n2|<N
and
> (@A) ((z1+n)’ + (@2 +n2)> + (w3 + N)?) 7 < @NHDNT D (14ng)? <N
[n1|<N,|n2|<N |n1|<N

—5/2
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the term corresponding to ng = N in S]J\r, leads to a sequence which tends to 0 as N — oco. Setting
= N leads to a similar estimate yielding

St = lim Sy,
N—oo
where

-y ¥ 23/}”um+mh“

ni=—N na=—N nz3=—N

Changing variables z; — x; —n; for j = 2,3 and combining the sums with the integrals, we obtain

Sy =4 Z

n1+1 N 1
J R R R
Ina|<N ¥ 1 0o Jo x]+tx;+ a3

We now explicitly compute the integrals over xo and x3 and denote the result by

dazgdxgdxl.

N 1 N N
— dxodxs = / arcsinh | ———— | dx
/0 /0 Va? + z3 + 2} ) Va? + ’
N N?
= 2Narcsinh | ——— ) — zarctan | ——— ) .
(\/:c2+N2> (:c\/a:2+2N2>

Observe that an has particularly simple derivatives,

d B 2Va? + 2N?

%a]\/(x) = —arccotT

d? 2N?

a2 ) = o
x (2 + N2) Va2 +2N?
3 2 (5N + 3N%2%)

g = -

(22 + N2)? (a2 + 2N2)7
Hence, using (109) and (110), integration by parts yields,

ni1+1 d2 ni+1 9 d2
Sy o= 4 ) / o ——¢ (@1 —ni)ay (z1)der =4 Y / w[](xl—nl)@w(m)diﬂl

Ini|<N ™ |n|<N <™

ni+1 3 d3

(112) =4 Z an(ni+1) —4 Z /n o (zg — nl)ﬁa]v(:nl)d:nl,
[n1|<N |ni|<N T
because p%l(1) = 0. The last term in (112), vanishes as N — oo since
ni+1 d3 d3
> / Bz — nl)ﬁaN(xl)dﬂfl < max ‘90[3](15) ‘ N (1)
ni X tE[O,l]
[n1|<N [ni|<N
<C Y N?*=C@N+1)N?

[ni|<N
for some constant C. Therefore, using (111),

N+1 2

1
: _ 2
J S =2 [ Lot b 30 o
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and, since limy 00 any(N + 1) = limy o0 any(—N) =0,

Jim sy =1 [\ ot _Z o

The result follows observing that

1 & 1
(113) - —
Z e N, 0+ )2+ (R)°

it is a Riemann Sum in the interval [—1, 1] for the continuous function

1
(1+22)vV2+a2" As N — oo,

the sum (113) converges to

wl

[ v

dr =
1 (T4 22)V2 + 22
For part C, given a mean free function o1 we write it as ¢1(t) = ¢ q4(t) + @even(t), where

(114) ‘Podd(t) _ Qpl(t) - ‘;201(1 - t) 4,01(75) + 9201(1 — t) ‘

Since both ¢1 and ¢,qq are mean free, the same holds for peven. Using parts A and B and the
definitions of ¢ 434 and peven, the result follows adding

2= 2 1t L —_—/ﬁ
3 0 (’DOdd 371' 2 (101 — (101

4 1t2 (t)dt—i/l 2 _yql @1 (t)dt = 4/1(152—75) (t)dt
3, | revente =g ) 2 31 PLEIG

and Yeven (t) =

and

8.6. Proof of Proposition 7.

Proof. Since from (72) we have that ®;;(z) = (—1)" ®;;(x), it is enough to show the result for

;0
7-i(i)’;OO'

By (26) and (22),

; 0
7;?’;(())0( - hm Z Tll’I:)O Z / free X+n)CI)Z1Z (‘Tl)@izié(xQ)(I)lslg(‘T?))d

% Inllo<N “ Inlleo LI

Therefore, Lemma 20 implies that 7;?,;;00(;0 vanishes whenever any of the functions (I)iji;a 1=12,3
is odd, which, by (73), is the case if i; and i; have different parity. We have proved part (ii). Next
consider the case of i; and ¢j; having the same parity for all j. In this case all the functions
<I>,~j,~3, j=1,2,3 are even and

ii’;;(())O(lu) = 8]\}1H1 G“ree(x"i'n)q)zlz (xl)q)mz (;1;2)(1)232 (l‘3)d
7% ey /O

=8 [ P (1) ()i () )
0,1
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For part (iii), by symmetry of the kernel, it is sufficient to consider only one of the elements listed
on each of the three cases. The case i = (1,1,0) and i’ = (0,0,0) follows from part (ii). For the
other two cases, we write

iy (x) = O(21)Poo(72)Poo(z3) = P(21)(1 — |22|)(1 — [z3]),

where @ is either @17 or ®9y. Part (i) is also covered considering ®(x1) = 1 — |z1]|. We write
. 1 1
(115 Titon) =8 [ @) (54 6tm) (5 + ot0) ) Gl

where o(t) = 1/2 — ¢. Expanding the product in (115) and using that G%; is even about 1/2 on
each variable, G4 (1 —z1,1— 29,1 — x3) = G (21,22, 23), we obtain that all terms vanish, with the
only exception of the term corresponding to 1/4 ®(xz1). Hence,

(116) 00 =2 / B(21) G, (x)dx.
0,112

For ®(z1) = ®ao(z1) = —vba1 (1 — 31 + 22%), 7;?,;_%0(;1) vanishes because ¢ is odd about 1/2. For
®(x1) =1—21 =1/2+ p(x1), we obtain part (i) since

. 1 el o 1
7-07(.) _ G“ x dX _ / 7dx = / E_HTT dT‘ - —5-
00,00(#) 0.1]3 1 (%) 47 rs ||| 0 we

It only remains to consider ®(z1) = ®11(x1) = 1 — 321 + 22} in (116). This case is more delicate
and to obtain the answer we describe a more general approach for the computation of integrals of
the form

I= [ eron)ealea)on(an) G (xx

where o; € L*([0,1]3). Since G%

Free € LY(R3), it follows ﬁiom [33, Thm. 2.4] that G4 € L'([0,1]?)
and that its Fourier coefficients are given by gn = <G?T€e> (n) =1/ (47*n? + 47?n3 + 4n?n3 + p?).

Hence {gn}pezs € (3(Z%), and, therefore GY; € L*([0,1]*). As a result, using Parseval’s identity we

obtain
_ 9/51 ni 9/52 no 9/53,n3
) Z 2
47T ez M+ n3 +n3 + (45)
(117) — L lim P1,n1 92,02 P3,m5

47?2 NSoo =N 2’
Inlloo<N ni +n3 +n3+ (45)

where @; ., is the Fourier coefficient n; of the function ¢;. In particular, if p2 = @3 = 1, using
Parseval’s identity but now for functions of one variable, we obtain

1
901n1 _ < mx\ :i/ YA, (t)dt
471'22 %(plm ’ 20 Jy A
where
t 1—t
e
neZ et —1

is odd about 1/2. Writing ¢1(t) = vyqq + Peven(t) as in (114), we have

1 1
= _/ SDeven )dt m/ goeven(t)e”tdt.
- 0
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Therefore, for i =i = (1,0,0) we obtain

O () 2 /11—6t+6t2 it gy (12 — 6+ p%) e — (12 + 6 + p?)
YR f— e g .
ii’;00 \ U (6“ _ 1) 9 #4 (6“ _ 1)

8.7. Proof of Proposition 10.

Proof. For part (i), observe that the separable function @4y (x) contains a function of the form @, .

3%
such that i; + z; is odd. By (73), such a function is odd. Hence, the result follows from Lemma 20.
For part (ii), since (72) asserts that ®;;(x) = (—1)+7 ®;;(x) , it is enough to show the result for
7;?,;_%0. By symmetry of the kernel, it is sufficient to consider only one of the elements listed on each

of the three cases. The case i = (1,1,0) and i’ = (0,0,0) follows from part (i). For the other two
cases, we write

i (x) = ‘I’(l’l)@oo(wﬁ@oo(%) = ®(z1)(1 = [22])(1 — |z3]),
where @ is either ®1; or ®9y. By (73), Py (x) is even in all of its arguments and hence

(118) 0 Z /01] p(2) + 3) (p(z3) + i)dxld@dg;g,

11’ 00 — ” = Hx—i—nHQ

where p(t) = 1/2 —t. By expandmg the product in (118), we observe that, with the only exception
of the term corresponding to 1/4 ®(x1), all other terms satisfy the assumptions of Proposition 21
part A. These terms do not contribute to the value of 7;(1),;,%0 because all of them contain the factor

fl ®(t)dt, which is zero due to (3) and that ® is an even function,

0
1 1 1
/0 B(t)dt = 5/_1<1>(z:)dt ~0.

1 P
— lim / ﬂdl‘ldiﬂgdiﬂg.
0,13 |[x +nll2

Hence, 7-0

i:00 equals

The result follows using Proposition 21 part C applied to either ®(z1) = ®11(z1) = 1 — 31 + 23
or ®(z1) = Pog(21) = —vba1 (1 — 3xq + 22F) with 21 € [0,1]. O

8.8. Proof of Remark 11.

Proof. Taking into account part (i) of Proposition 10, it is enough to consider i; + z; to be even, for
all 7 = 1,2,3 and hence (73) yields

0
7:(1)00

N—> dmldazg dxg

/ ®iyo(21)®;, 1 (21)®; 1 (21)
[0,1]

Il I+ nll2

Since 47 is even and greater than one, (74) implies that ®; ¢(z1) is odd about 1/2. Thus, using
Proposition 21 part A, we have

00 = —g < /0 1 tD;,0(t) dt) < /0 1 P, (t) dt> ( /0 1 P, (t) dt> :
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which, by (80), vanishes if i; > 4. It remains to consider the case i1 = 2. Since |i + 1| > 2, either

19 + 2/2 or i3 + zé is positive; thus, due to (3) and that the functions <I> ;- are even, at least one of
J

the two functions <I> ;. or <I> p is mean-free. O
2 2

8.9. Proof of Proposition 12.
Proof. Let

Z / 1(z1)a(w2)p3(x3)G(1 + 1y, T2 + no, T3 + ng)dx,

[nlloe

and assume that ¢; is odd about 1/2. Repeating the steps performed at the beginning of the proof
of Proposition 21, we obtain

1
> / ¢1(21)G(21 + N1, T2 + N2, 23 + ng)dry = —/ o1 (21)Ga, (w1 + N, @ + o, x5 + ng)day,
In1|<N 0

where 4,0[1} = [y w1(t)dt. Hence, by the assumption (42), we have

1Sx| < C@N + 1) (21 4+ N)2 + (32 + n)2 + (x5 + n3)2) > < (2N + 1)2N 279,
where N > M and C is a constant. The result follows. O
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