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For a volume-preserving map, we show that the exit time averaged over the entry set of a region is
given by the ratio of the measure of the accessible subset of the region to that of the entry set. This
result is primarily of interest to show two things: First, it gives a simple bound on the algebraic
decay exponent of the survival probability. Second, it gives a tool for computing the measure of the
accessible set. We use this to compute the measure of the bounded orbits fontmeddadratic

map. © 1997 American Institute of Physid$$1054-150(07)00101-§

One important aspect of chaos in conservative dynamical and use our formulation to compute the measure of the
systems is that chaotic and regular regions are inter- trapped orbits.

mixed in an intricate way in the phase space. This can As an example, consider Hen’s area-preserving, qua-
have important implications for transport properties of dratic map, which we write as

these systems. For example, orbiFs o.f an area-preserving H:(%,y)— (y— K+ X2, —X). )
map are eternally trapped in a region if they are enclosed
by an invariant circle, but can leak through destroyed We are interested in the set of bounded orbits. It is possible
circles (cantori). In this paper we obtain an effective to show that(for k>—1) all bounded orbits are contained in
technique for computing the fraction of trapped orbits.  thesquaréz=(x,y):|x,y|<xs}wherexs = 1+ y1+k.Here
The result, applied to the Heon map, shows that the Wwe denote the two fixed pointfor k>—1) by .= (X, — Xe)
trapped fraction depends in an intricate way on the andzs=(Xs,—Xs). The first is elliptic when—1<k<3, and
structure of the chaotic set. the second is a saddle. Bounded orbits include all periodic
orbits and all orbits within invariant circles; for example, the
latter exist in the neighborhood @f, providing it is elliptic

and has a rotation numbep, that is not3 or 3 (i.e., k#3 or

=3). Hyperbolic orbits can also be trapped: for example,

In this paper we study the time of escape for orbits thatthose that are homoclinic to the saddle fixed point.
In his original papet/ Henon studied the set of bounded

begin in a specified regioA under the dynamics of a mép orbits of H (in a different coordinate system than ours

on a pha;e Sp"’?‘“- We discuss thex_lt t_|me the t_|me fora by iterating points along a segment of the symmetry line
po!nt to first exit the set, and trtgan_sn tme the t_|m(_a fora (x=—y) to determine the subintervals that did not reach a
point t(_)_trav_ersfe the set. Tr@('t time dlst_r|but|on|s the fixed large distance from the origin within 100 iterations. He
probab.lhty. dlgtrlb'utlon of exit times. Our primary goal is to noted that ak varies, the boundaries of the trapped intervals
use this d'St_”bUt'on to pro?’e th_e.trapped invariant set._ Theeither closely follow the position of an unstable rotational
trapped set is generally quite difficult to compute, and s Ofheriodic point or else an island around an elliptic periodic
interest because its boundaries are extremely “sticky point. Channon and Leibow#& studied the escape and trap-
and so even untrapped orbits feel its influence. Our resultﬁing from the period 5 island chain in the #ten map at
apply to volume-preserving maps in any dimension wherg— _o 422. They identified the exit and entrance lobes of the
the mechazusms for trapping and escape are much lesgsonance as the important sets to consider. Studying the
understood: . _ o _ fifth power of the map, they started 7750 orbits in the outer
The theoretical result obtained in this paper is notentrance lobe and computed the survival probability distribu-
new—it was essentially obtained by Kac in 1947°and he  tion. This was found to decay ds¢ with «=0.5 for short

even quotes earlier results of Birkhoft931) and Smolu-  times(up to 10 iterates but deviated from this for moderate
chowski(1916. Kac was studying the mean first return time times (up to 45 iterates
to a region in a bounded phase space for an ergodic system; Karney” also considered the en map, and studied
this can be called the mean Poincegeurrence time or Poin- the survival probability for a squar enclosing all bounded
care cycle. He obtains his result as a consequence of therbits. He mostly studiekl=—0.6 where the most prominent
Poincarerecurrence theoref?. We reformulate the result for island chain is period 6. Karney’s primary object of study
nonergodic systems, and show how it can also be obtaineas the “trapping time statistic” which is proportional to the
by considering the mean first exit time. exit time distribution forA. He found that this distribution
In his 1957 lecture Kd€ remarks that the mean recur- decayed as™“"? with « about 0.25, for times up to 10
rence time is “the only quantity which is tractable for gen- iterates, though the slope subsequently appears to vary for
eral dynamical systems;” however, he abandons it as “relatimes up to 18 Chirikov and Shepelyansicomputed the
tively useless.” We will not take this admonition to heart, Poincarerecurrence distribution for the standard map when

I. INTRODUCTION
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140 J. D. Meiss: Exit time for maps

there is a critical golden circle, obtaining=0.34 up to 16
iterates. Though algebraic decay has been observed in many
Hamiltonian systems and symplectic mafpsdeed, when-
ever there are elliptic orbits the decay appears to be alge-
braic, the exponent for the decay is apparently not
universal! One reason this might be so, according to
Murray?? is that the self-similar limit is not reached for
“short” time computations. The Poincamecurrence distri-
bution has also been computed for flows, for example by
Zaslavsky and Tippet [Interestingly, they speculate that a
relation like our Eq(13) holds]

Rom-Kedar and Wiggins have emphasized the fact that
one can obtain a complete description of transport through a
region by considering the future history of only the entering
trajectories. Using their notion of “lobe dynamics” for a
homoclinic tangle, they obtained an expression for the acces-
sible region in terms of the exit time distribution—we will
use a slightly generalized version of this below.

Il. DEFINITIONS

Let f:M—M be a homeomorphism with an invariant FiG. 1. Exit and entry sets for the fixed point resonance of theorenap
measurew. For measurable ses,BC M, the crossing time  for k=0.5.
(or first passage timegfor ac A to B is defined as

: The transit time of a poinga is the sum of its forward
t a)=min(n:f"(a) € B). 2 e ; . .
a-s(@) n>0( (a)eB) @ and backward exit times minus(fo get rid of an annoying
term),
We lett,_,g(a) =« if a never reacheB. If B is the comple- ot _
ment of A, then the crossing time is called tfferward) exit transi{ @) =t"(a) +t"(a) ~ 1. @)
time The transit time is an orbit invariant: each point along an
. orbit has the same transit time. Thansit time decomposi-
(@) =ta_ma(a). () tion of a set is the partition of a set into subsets with equal

transit time. We denote the transit time decomposition of the
entry setl by setsT;; this is also the part of with exit time
t (a)=min(n:f""(a) ¢ A). (4 I

n>0 T,={acl:t"(a)=j}. (8)

Similarly the backward exit time foae A is defined as

If B=A, then the crossing time is called the first return time:For example, we show the first few preimages of the exit set
in sequentially lighter shades of red for thértda resonance
tewrd@)=ta_a(a), for aeA. (5)  zone in Fig. 1. For this parameter vallig=T,=T;= ¢ and
T, is shown. A partial transit time decomposition of the

According to our definitiont,e,,{a)=1, and is equal to 1 Henon entry set is shown in Fig. 2.
whenever the point does not leave on the first iterate. We By measure preservation, almost every point that enters
define theexit set EZA as the subset with exit time 1, and A must eventually escape, so
the entry (or incoming set ICA as the set with backward
exit time 1; equivalently, -

pE)=pn(h=2 w(T). ©)
E=Af1A), I=Af(A). 6) a

The accessible sef.CA is defined to be the set with
Theturnstile is the union ofg and[. finite backward exit time; it is the set that can be reached

As an example, consider the hten map in Eq(1). A from the outside:

natural choice for the regioA is the “resonance zone,”
shown in Fig. 1, consisting of the region bounded by the A, ={aeA:it™(a)<x}. (10
segments of the left-going branches of the stable and un-
stable manifolds of the saddle fixed point up to their firstOf course, the set with finite exit time differs frof,. at
intersection on the symmetry ling€ —y). This region con- most by a set of measure zero, since the set that enters but
tains all bounded orbits dfl. never exits must have measure zero.
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J. D. Meiss: Exit time for maps 141

Exit Time Distribution
Henon Map, k = 0.5

t 100

FIG. 2. Exit time decomposition of the entry set of thénide trellis atk=0.5. Color scale is given at the bottom.

Il. AVERAGE EXIT TIME 1 =
. . . . (= 2 ),

In this paper we are interested in these transport times 1) /=
averaged over sets of initial conditions. For a functgda)

we denote assuming the sum exists. Given the transit time decomposi-

tion T;, we can compute the accessible subsek ofing the

1 sets
(05 | 0@

S S

wS Js TI=fi(T)).

Remarkably, there are some simple formulas for average _
transport times. The following lemma was stated for volumeNote thatT;CA for i=0,...j—1, and that these sets are
preserving flows(without its elementary propfin Ref. 24  disjoint because they have transit timand backward exit
and is implicitly obtained for two-dimensional maps in Ref. timei+1. Furthermore the union of these sets is, up to mea-

25, sure zero, the entire subsetAthat exits. Thus by definition
Average Exit Time Lemmafhe average exittransi) _
time for incoming orbits is =i S
Aact::_U _U Tj:M(Aacr):jzl iZ:O M(Tj)-
m(Aacd j=1i=0 T
t) = (tyansivl = . 11
< >| < transn>l /-L(I) ( )

Since measure is preservgrﬂT‘j)=M(Tj), and so

Proof: SinceT;CI are disjoint and cover almost all bf w
anq t'he gngnd transik time of the sefT; is j, the average M(Aacc)=2 Ju(T)). 12
exit time is given by =
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142 J. D. Meiss: Exit time for maps

An almost identical expression was obtained by Kaee
Ref. 16, p. 66 though he does not make the interpretation  (t™), =
about the accessible region. Rom-Kedar and Wiggins have

acc

ac& E M(T)E (i—k)

also obtained this result. Comparing Eq(12) with the ex- 12 G+

pression for (t*), gives the lemma. Finally since = > w(T)). O

(A d=<u(A), it is clear that the sum in Eql12) con- #(Aacd =0 2

verges. O In contrast to the exit time averaged ouerwe cannot use
Since u(A, is finite, a simple consequence of this re- disjointness to show th&l4) converges. In fact as we show

sult is: by a simple example in Sec. V, these sums need not con-

Corollary 1: The measure of the region with transit time verge.
t must decay faster than 2.
Furthermore, the lemma implies well-known results for
the average return time obtained by Kac and SmO|UCh0WSkIIV EXIT TIME DISTRIBUTIONS
(Refs. 15—1& In our context these can be generalized to: As was emphasized by Rom-Kedar and Wigdiiifsone
Corollary 2 (Smoluchowski)Supposeu(M)=1. The knows theT;, one has most of the information one could
average first return time for points that escape in one steant about transport through. Here we recall some defini-
from ACM is tions of normalized exit and transit time distributions.
The exit time probability distribution for the entry set is

(trewume=1+ M(M(aEC;A) =1+ M(MaC?E_)’M(A) the probability that a trajectory ih will have a given exit
s H time:
where M .. is the subset oM that is accessible to orbits w(T)
beginning inA. Prot*(1)=j)= M(—ll) (16)

Proof: Consider the se¥\A. Points enter it by escaping
from A, so the entry set of\A is f(E). The corollary fol-  Similarly the survival probability is the probability that the
lows from the Lemma if we replack,..by M ,.0A, andl by  exit time will be at leask:

f(E). We then add one to the result, since the return time to

A is one larger than the transit time throu O
Corollargl 3 (Kac): Supposeu(M)=1. ng average first Prof(t™(1)=k)= (|) 2 #(Ty)- (17
return time to a regioMCM is Note that Prokt* (1)=1)=1 by Eq.(9).
M e Once we know theT;, various distributions foA are
<treturr*>A:T: (13 also known. For example smcfé(Tkﬂ)CAacc has exit time

k (with backward exit timg +1), the subset oA, that has
where Mg is the subset oM that is accessible to orbits exit time k is given by U of (T ). Thus the exit time

beginning inA. probability distribution forAaccls

Proof: For points that stay i for at least one step, the
first return time is one. The remaining portionAfis its exit
setE. We use Corollary 2 for the return time for these points.
So the average first return time £ois

E w(T))

Prob(t™ (Ayed =k) = (A &

—— Prol(t*(1)=k),

= 7T
< returr>A (A) [(u(A) = w(E)) X1+ u( E)X<treturr>E] <t >|
) which is the same as the survival distribution foin Eq.
This reduces to the promised result. O @7, up to normalization. Similarly the subset &f with

Vxe can also easily compute the transit time averagegansit timej is U} _5f*(T;), thus the transit time probability
over

is
Corollary 4: The average transit time for points that do

escape fromA is u(T;)
Prol(tyansif Aacd = =
li tran5|£ aC(‘) J ) 2 J M(Aacc)

(tuansiva, = (A o = 2 J2u(Ty), (14) Finally the survival time distribution foA is
providing that this sum converges. In this case, the average . _ S~
exit time for A is Prot(t™(A)=k)= w(Ascd 1=k i #(Tm)

+
<t > Aacc (<t"ans'9Aacc+ 1) (15) 2 JM(Tk+])

/-L(Aac =1
Proof: Since each image df; has the same transit time,

the area ofA that has transit timg is ju(T;). This gives
(14). Equation(15) follows from w(T )~k 2T ag k—oo,

Note that these equations imply that if, e.g.,
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FIG. 3. Transit time decomposition of the entry region for the linear hyper-
bolic map. The transiting regiori , j=1,2,3 and a few of their iterates are

shown.

where a>0 by Corollary 2, then we have

Prol(t*(1)=k)~k~(@*2)

Prok(t™ (1)=k)~Prol(t ™ (Azcd =K)

~Proltyansi{ Aacd = K) ~ k™ et 1)1

Prob(t ™ (Acd=k)~k™“.

V. EXAMPLES

Consider the linear, area-preserving, hyperbolic map

RPN

;)

whereA>1. Let A be the unit squarg(x,y):0=<x,y<1}.
rectangle= A\f(A)
={(x,y):0=x<1)\"!l<y=<1}. It is easy to see that the
transit time decompositiofsee Fig. 3of | is

T={(x,y): A T<x=AI, A lays<1)

Then the entrance set is

So the measures of each of these regions are

A—1)(1-r"1
M(Tj)=——( ()\, )-

the

J. D. Meiss: Exit time for maps 143

A1

.2 . - =
2 PwT)= =g

as required by the lemma. Thus the average transport times
are

R NFL A
=7 Casta=y =70 (a=3=7- 19

These results are unchanged if we scale the size @ince
the map is linear or if we replaceA by a square centered on
the fixed point(since the map is symmetjic

More generally, suppose the map is a diagonal hyper-
bolic matrix with eigenvalues Nj,A....Aq, M4+ 1s
M2---,Mn), Where the\;>1 and thew;<1. Then the entry set
of the unit hypercub@ is the union of rectangular cylinders:

n
I= U {(Xq,..Xy) e A: p <x =<1}
k=d+1

If we define A=II"_,\;, andII=II""_, , u; to be the total
expansion and contraction, respectively, then a simple calcu-
lation gives the measure of the transit regions by

A-1)(1-11
wry= S 0

in complete accord with Eq18). In the volume preserving
case, we see thatll=1, and so the formulas Eq), (12),

and (14) again hold, and the average times are given by Eq.
(19) with \ replaced byA.

A similar formula would apply to the uniform horseshoe.
This case, and that of other trellis types, have been treated by
Rom-Kedar’® who estimates the accessible area under the
assumption that the transit decomposition stretches uni-
formly.

Though the regiorA that we considered above is spe-
cial, a theorem of Eastdfhimplies that the rate of escape for
any isolating neighborhoods of an invariant set asgmp-
totically similar. Thus any region surrounding the fixed point
will have escape that is exponential with rate Similarly,
any diagonalizable hyperbolic map with expansitnwill
also have the same asymptotic rate.

Of course, we expect exponential decay of the transit
time decomposition for a hyperbolic system. As we re-
marked in the Introduction, numerical observations of trans-
port, however, indicate that the transit time decomposition
decays algebraically when there are elliptic regiona.iThe
simplest example of this behavior is the trivial shésee Fig.

4):

These decay exponentially, as one would expect. The calcu- X'=x+y’,

lations needed for Eq$9), (12), and(14) are derivatives of

simple geometric sums, yielding

2 wT)=(=2"H=u()

2, InT)=1=n(A),

y'=y.
Let A be the unit square as before. Now the entry set is the
triangle | ={(x,y)=0=<x<y=1}. The transit time decom-
position is

Ti={(x,y)el:1-jy<x<1l-(j—1)y}.

These sets have measures that decrease algebraically
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144 J. D. Meiss: Exit time for maps

10° L‘
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1
10° K\\'\
1
o N ) 0.01 0.1 1 10
FIG. 4. Transit time decomposition for the simple shear. k+1

FIG. 5. Average exit time for the H®n map as a function of parameter.
1 ) Most points usedN=10" and t.,=1C, though fork<—0.95, we used
w(T)=7, M(TJ)=—2—J-(J- —1) j>1. ta=5X 10",

The sums to get the average transport times are elementary
telescoping sums, and again these verify E§s.and (12).
However, for this example the average transit timeXpEq.
(14), does not exist.

action between the two homoclinic poiftsThen u(A,.J is
obtained from Eq(11). It is interesting to compare this with
the total area of the resonance zone itse{f)). This is most

. easily computed by taking the difference in action between
VI. BOUNDED ORBITS FOR THE HENON MAP the action of the minimax homoclinic point and the fixed

As a final example we use the average transit timePoint”’ These areas are shown in Fig. 6.
which is straightforward to compute, as an effective method =~ Note that the resonance and lobe area grow monotoni-
to obtain the accessible area, which is not otherwise compugally and smoothly. The valu&=—1 corresponds to the
ab|e_ Here we do th|S for the resonance zone of tﬁedﬁe Saddle'node bifurcation, Where the fixed pOint resonance
map. The calculation involves several steps. First we find th&one is created. Slightly above this point, the lobe afe,
points on the minimizing and minimax homoclinic orbits,
andz,, that bound the lobésee Fig. 1 We then construct
the boundary of the entry set, by discretizMf andW?, as 501
graphsy"(x) andy®(x), to a resolutiorh=(x,,— x;,)/N for a -
fixed number of pixeldN. Generally, in our calculation we
usedN=10" By reversibility, the exit set is the reflection of / HA)
the entrance set aboxit-y=0. The average exit timét ), , o1 / T uD=aw
is given by an integral of the piecewise constant exit time / !
over the entry set. We do this double integral in the most /

naive way by first integrating (x) = fzz((xx))t * (x,y)dy for 304
fixed x, and then integrating overusing Simpson'’s rule. To At /
computeT(x), we use bisection to zoom in on the disconti- /
nuities oft™: first evaluatet™ on a grid of sizeh; if t* does 20l /
not change between two grid points, we assuipessibly /
incorrectly that it is constant between. If there is a change,
we bisect the interval until either” is equal on the end- /
points, or the perceived error in neglecting the variatiotiin mf /
is small enoughwe chose an error of I8 for this). Also, /

we truncatet™ at some maximum value, usualty,,,=10°. 7/

Then T(x) is the sum of thet* values times the interval 0Ky e — oy | ' '
lengths. The resulting average exit time is shown in Fig. 5. 0 2 4 6 8 10 12 14
Though(t™), is generally decreasing as a functiorkothere Kk

are numerous small upward jumps. We discuss these more

below. . . . . FIG. 6. Resonance and lobe area for thexétemap. Also shown ig(T),
The area of t_he lobe 1S either given by summing thewhich is nonzero beyond the formation of the geometric horseshoe at
number of pixels in the exit set, or taking the difference ink~5.706.
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FIG. 7. Accessible fraction for the fixed point resonance of thad#emap.
FIG. 9. Inaccessible fraction of the resonance zone for theoHenap. The

two solid curves represent simple approximations to the area enclosed by
near heteroclinic connections for the period three and period four saddle

. . a:“; N orbits. The fraction falls off on average exponentially withaside from
1S eXponentla"y sm and most of the resonance is filled dips near prominent bifurcation points. Along the top are showrk tvedues

with invariant curves. for bifurcations of the elliptic pointlabeled by rotation numbas/q), and
Combining these results, using E41) gives the acces- homoclinic bifurcations corresponding to the creation of type 2, 3, and 4

sible area. In Fig. 7 we show the accessible fraction!®"ises

(AL (A). The area that is inaccessible, which is identi-

cal to the measure of the bounded orbits is given by

M(A)=w(A) = w(Agcd = w(A) — uw(H{(t™),. better in the next figure, which is the best representation of

. . N o . . . this information, Fig. 9. This shows the inaccessible fraction,
This area is shown in Fig. 8; this figure is nearly identical tOM(A')/M(A)
i .

Fig. 4 of Ref. 1, but our method allows us to compute the” ™, Figure 9, the cutoff at a relative area of T0is an
results to much higher precision. The accuracy can be S€&hifact of our numerical method—it is quite difficult to re-

duce the error significantly. To do this one must increase the
maximum number of iterations,,,,, to pick out narrow cha-
otic layers near invariant circles, and one must incréhse
2 find all possible discontinuities in the exit time. It would be
nice to improve the accuracy by detecting these discontinui-
ties and find a form that fit$(x) in their neighborhood, but
A _ we have not done that.

The most prominent features in Fig. 9 are local minima
neark=0 andk=1.25. These correspond to the quadrupling
and tripling bifurcations of the elliptic fixed point. In the
A period four case, a pair of orbits with rotation number 1/4 are
created at the bifurcation. Interestingly forxR<0.4, the
saddle period four orbit, which has points arranged on the
square with corners % /k,*= /k), has nearly coincident
05 s stable and unstable manifolds—for practical purposes, a het-
eroclinic connection, Fig. 10. Furthermore for €/2<0.4
this feature dominates the inaccessible set. Using this ap-
proximation givesu(A,;) ~4k for k>0—this formula, shown

L5

» 0 ) 2 3 ‘ in Fig. 9, gives good agreement with the computed results.
k Of course, there are other inaccessible islands, most impor-

tantly islands around the ellipti@=1/4 orbit. These cause

FIG. 8. Measure of the bounded orbits for thénida map. the fraction for 0<k<<0.2 to deviate from our simple form.
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146 J. D. Meiss: Exit time for maps

FIG. 11. One of the islands around a period three orbit=at.25, the period
tripling point of the Heon map. Plot bounds afe-1.51,—0.597x(—1.48,
-0.375.

a second period three orbitl/2,—1/2)—(—3/2,—1/2)—(1/
2,3/2, that is elliptic. The island chain surrounding this orbit
(see Fig. 11, has a relative area aboux80 *, accounting

for most of the inaccessible area. There are no other visible
islands.

There are other sharp drops in the inaccessible fraction,
the most prominent occur &=-0.61,—0.414, 0.585, 0.78,
2.50, and 3.17. These occur when an invariant circle is de-
stroyed, instantaneously opening up a new accessible region.
The newly opened region will be “large” if the critical circle
is just outside a large island chain. For example niear
=—0.4145 there is a single invariant circle bounding 1/5
island chain(in the range 6/3%»<7/36). This invariant
circle is destroyed bit=—0.414, leading to the opening of a
new accessible domain, and consequent decrease in measure
() of the bounded orbits.

FIG. 10. Haon map fork=0.2 andk=1.6. The outermost invariant curve
surrounding the elliptic fixed point is closely approximated by a saddley/||. CONCLUSIONS
connection of theo=1/4 and the 1/3 saddle orbits, respectively. Bounds for

the two figures aré—1,1)x(—1,1) and(-1,0x(0,1), respectively. We have shown that the average exit time from a region
is given exactly by the ratio of the area of the accessible
portion of the region to the area of the exit set in EL). It
A pair of period three orbits is created by saddle-nodds interesting that this provides a justification for the oft used
bifurcation atk=1. At k=5/4 the period three saddle collides estimate that an “escape rate” from a region is given by the
with the elliptic fixed point and there are no encircling in- inverse of this ratio. We use E{L1) to provide a nice nu-
variant curves. Near this bifurcation, the most important feamerical tool for computing the measure of the bounded orbits
ture is the virtually perfect saddle connection of the mani-for the Hawon map. Unfortunately, computational resources
folds of the period three saddl¢ésee Fig. 1B which limit our accuracy in this calculation to a relative measure of
has points at(—8,8)—(—1+8,8—(—B,1-B), with B  about 10°.
= k—1. Using a triangle as an approximation for this area  For the future, it would be inviting to apply E¢ll) to
gives u(A;) ~1/2(28—1)2. The resulting curve is also shown study the bounded orbits for higher dimensional maps, for
in Fig. 9; it fits remarkably well for 1.28k<2. Note that, example Moser’s canonical form for the quadratic symplec-
contrary to the impression given by Fig. 9, the inaccessiblgic map?® Such maps have important applications to particle
fraction does not go to zero kt=1.25. In particular, there is accelerators.
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