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ABSTRACT

The largest eigenvalue of the matrix describing a network’s contact structure is often important in predicting the behavior of dynamical
processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for
hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the
degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and
use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical
assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity
of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086905

Many models of epidemic spreading assume that individuals
connect solely through pairwise interactions, which is often not
the case. We define a model of epidemic spread that is mediated
by group interactions, also known as higher-order interactions.
Degree assortativity is the tendency of individuals with a simi-
lar number of connections to connect with each other more often
than would be expected at random. When groups of individu-
als are connected in a degree assortative manner, epidemics are
more likely to occur. We present a definition of degree assortativ-
ity for higher-order interaction networks that is meaningful for
epidemic dynamics and show that epidemics can be extinguished
by changing the assortative structure of these higher-order inter-
action networks.

I. INTRODUCTION

Complex social systems often exhibit assortative mixing,1,2

where individuals with similar characteristics connect with each
other more often than would be expected if they were connected
at random. Assortativity has been extensively studied in network
science3 and found to have significant effects on synchronization,4

epidemic dynamics,5,6 stability,7 evolutionary game dynamics,8 and
general diffusion processes.9

Recently, there has been much work on using hypergraphs to
describe systems with interactions involving multiple agents.10–12

Hypergraphs are useful to describe multi-way interactions in
biology,13 social contagion,14–16 synchronization,17 opinion models,
infectious disease spread,18 and real data.19 Recently, the pairwise
notion of assortativity has been extended to hypergraphs for cate-
gorical node labels20–22 and continuous attributes.19 Assortativity on
hypergraphs can provide different insights on the structure of the
interactions than assortativity on the pairwise network projection19

and, as we will show, affect the outcome of hypergraph dynamical
processes.

A fundamental problem when studying dynamics on networks
is to determine how structural characteristics of the network affect
the dynamical behavior. Many dynamical properties, such as the
onset of epidemic spreading,23 synchronization,24 and percolation,25

are determined by the largest eigenvalue of the network’s adjacency
matrix (or, in some cases, of the non-backtracking matrix26). In
turn, this eigenvalue is affected by the network’s degree distribu-
tion and assortative mixing properties27 as well as other structural
characteristics. In this paper, we show how the expansion eigen-
value, a suitably generalized eigenvalue for hypergraphs, is similarly
modified by the assortative properties of the hypergraph. This eigen-
value has been shown to determine the extinction threshold for the
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susceptible-infected-susceptible (SIS) model on hypergraphs,28 and
we believe it will also prove useful in relating hypergraph assortative
mixing patterns to other dynamical processes.

Our approach is as follows: first, we define and motivate the
importance of the expansion eigenvalue on dynamical processes;
second, we derive a mean-field approximation of this eigenvalue
for hypergraphs without assortativity; third, we present a generative
model for assortative hypergraphs; fourth, we employ a perturbation
approach to derive the effect of degree–degree mixing on the eigen-
value and define the dynamical assortativity; and last, we show how
our results can be used to modify hypergraph dynamics through
preferential rewiring of hyperedges.

II. PRELIMINARIES

We start by defining terminology. A hypergraph is a mathemat-
ical object that describes group interactions among a set of nodes.
We represent it as H = (V, E), where V is the set of nodes and E is the
set of hyperedges, which are subsets of V and represent unordered
interactions of arbitrary size. We call a hyperedge with cardinality
m an m-hyperedge and a hypergraph with only m-hyperedges an m-
uniform hypergraph. It is useful to consider weighted hypergraphs,
where each hyperedge e has an associated positive weight βe. We
define the hyperdegree sequence as in Ref. 15, where the mth order
hyperdegree of node i, k(m)

i , is the number of m-hyperedges to which
it belongs.

We now define the expansion eigenvalue and discuss its rel-
evance to dynamical processes on hypergraphs. For a weighted
hypergraph, the expansion eigenvalue λ and associated eigenvector
u are defined by the eigenvalue equation

λui =
∑

e={i,i1 ,...,im−1}∈E

βe(ui1 + · · · + uim−1), (1)

where λ and u are the Perron–Frobenius eigenvalue and eigenvector
of the non-negative matrix associated to linear equation (1).

A. Motivation

Here, we present some applications of the expansion eigen-
value. First, just like the Perron–Frobenius eigenvector of a net-
work, the adjacency matrix represents eigenvector centrality;29 in the
unweighted case (i.e., βe = 1 for every hyperedge e), the eigenvector
u corresponds to the Clique motif Eigenvector Centrality, a gen-
eralization of eigenvector centrality for hypergraphs.30 Second, just
as the largest eigenvalue of a network’s adjacency matrix influences
network dynamics, the expansion eigenvalue plays an important role
in dynamical processes on hypergraphs. For example, consider an
SIS process on a hypergraph, where a healthy node can get infected
via a hyperedge e to which it belongs at rate βe if at least one other
node in e is infected (the case referred to as individual contagion in
Ref. 15) and heals spontaneously at rate γ . As discussed in Ref. 28 in
Theorem 9.1, the extinction threshold for the exact stochastic pro-
cess can be bounded above by that for the mean-field dynamics. The
mean-field equation for xi, the probability that node i is infected, is

given by

dxi

dt
= −γ xi + (1 − xi)

×
∑

e={i,i1 ,...,im−1}∈E

βe[1 − (1 − xi1), . . . , (1 − xim−1)]. (2)

By inspection, xi = 0 for all i is always a fixed point of this
equation. We write an ODE for linear perturbations around this
equilibrium to derive conditions for the system’s stability. To first
order, the equation for the perturbations, δxi, is

d(δxi)

dt
= −γ (δxi) +

∑

{i,i1 ,...,im−1}∈E

βe(δxi1 + · · · + δxim−1), (3)

If we assume δxi = ui ert, then

(r + γ )ui = λui =
∑

{i,i1 ,...,im−1}∈E

βe(ui1 + · · · + uim−1), (4)

where λ is the expansion eigenvalue and so, r = λ − γ . Therefore,
a sufficient condition for epidemic extinction is γ > λ.28 For an
m-uniform hypergraph with βe = βm, the extinction threshold is
βm/γ < 1/λ, where λ is the expansion eigenvalue of the unweighted
hypergraph.

If we rewrite the last term of Eq. (3) as a sum over uniform
hypergraphs, then

d(δxi)

dt
= −γ (δxi) +

M
∑

m=2

(m − 1)
(

W(m)
δx

)

i
, (5)

where W(m) is the weighted version of the clique motif matrix
defined in Ref. 30 and δx = [δx1, . . . , δxN]. We can define W
=
∑M

m=2(m − 1)W(m) as a linear operator with eigenvalue λ and
as before, the extinction threshold is γ > λ. In addition, we can
determine the relative importance of a node i with respect to this
contagion model (in terms of its probability of infection at the onset
of the epidemic) from the ith entry of the associated eigenvector.

Finally, the importance of the expansion eigenvalue in spread-
ing processes can be understood from the fact that in the unweighted
case, the number of nodes reachable via hyperedges from a given
starting node in ` steps grows asymptotically as λ` as demonstrated
in Ref. 30.

B. Hypergraph model

In this paper, we will consider random hypergraphs that are
constructed from a prescribed hyperdegree sequence {k1, . . . , kN},
where N is the number of nodes, ki = [k(2)

i , . . . , k(M)] is the target
hyperdegree of node i, and M is the maximum hyperedge size. The
hypergraph is then constructed by creating a hyperedge {i1, . . . , im}
with probability fm(ki1 , . . . , kim), where the functions fm specify the
assortative mixing properties of the hypergraph.

This generative model can produce hypergraphs with hetero-
geneity in the node hyperdegrees and correlations between hyperde-
grees of connected nodes. It can also be easily generalized to account
for assortativity by additional nodal variables such as community
labels or dynamical parameters. Its main limitation is that it does
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not capture connection patterns that are determined by structures
beyond a node’s immediate connections (e.g., the model cannot
account for hyperedges of size 3 that occur only when there is a
clique of three nodes connected by links, as one would see in a sim-
plicial complex). Nevertheless, this generative model is a versatile
and tractable null model to explore the effect of hypergraph struc-
ture on various hypergraph metrics, in particular, the expansion
eigenvalue.

III. MEAN-FIELD APPROACH

A. Uncorrelated m-uniform case

We start by deriving a mean-field approximation for the
expansion eigenvalue λ in the case where nodes are connected
with hyperedges completely at random [as in the hypergraph
configuration model15,19,31,32], which we call the uncorrelated case,
before considering hypergraphs with degree assortativity. In the
uncorrelated case, the function fm is given by fm(ki1 , . . . , kim)

= f(0)m (k(m)
i1

, . . . , k(m)
im

) = (m − 1)!k(m)
i1

, . . . , k(m)
im

/(N〈k(m)〉)
m−1

, where

we define 〈xp〉 =
∑N

i=1 x
p
i /N, corresponds to the case where nodes

are connected with hyperedges completely at random if the hyper-
degree of node i is ki. For simplicity, from now on, we will consider
an unweighted m-uniform hypergraph and will denote k(m)

i by ki and
refer to it as the degree of node i. Now, we assume that all nodes with
the same degree are statistically equivalent and that the eigenvector
entry of node i depends only on its degree, i.e., ui → uki

. In Sec.
V, we discuss the limitations of this approach. Henceforth, λ will
denote the mean-field approximation to the expansion eigenvalue
for convenience unless explicitly stated otherwise. Defining N(k) to
be the number of nodes with degree k such that P(k) = N(k)/N is the
degree distribution, the equation defining the expansion eigenvalue
can be written as

λuk =
1

(m − 1)!

∑

k1 ,...,km−1

N(k1), . . . , N(km−1)

× f(0)m (k, k1, . . . , km−1)(uk1 + · · · + ukm−1). (6)

By symmetry of the function f(0)m , we get

λuk =



(m − 1)
∑

k1

P(k1)
k1 uk1

〈k〉



 k, (7)

and multiplying both sides by k P(k)/〈k〉 and summing over k, we
obtain for the uncorrelated case

λ = (m − 1)
〈k2〉

〈k〉
, (8)

and uk ∝ k from Eq. (7).

B. Derivation of the non-uniform uncorrelated

expansion eigenvalue

We now relax the assumption of an m-uniform hypergraph
and consider an uncorrelated hypergraph with hyperedges of sizes
m = 2, . . . , M and hyperedge weights of the form βe = β|e|. The

expansion eigenvalue equation can be written as

λui =

M
∑

m=2

βm

∑

{i,i1 ,...,im−1}∈E

(ui1 + · · · + uim−1). (9)

The degree-based mean-field eigenvalue equation, where we assume
ui = uki

, can be written as

λuk =

M
∑

m=2

βm

1

(m − 1)!

∑

k1 ,...,km−1

N(k1), . . . , N(km−1)

× fm(k, k1, . . . , km−1)(uk1 + · · · + ukm−1). (10)

Focusing on the uncorrelated case, we assume that

fm(k, k1, . . . , km−1) = f(0)m (k(m), k(m)
1 , . . . , k(m)

m−1)

=
(m − 1)!k(m)k(m)

1 , . . . , k(m)
m−1

(N〈k(m)〉)
m−1 ,

so

λuk =

M
∑

m=2

βm

∑

k1 ,...,km−1

N(k1), . . . , N(km−1)

×
k(m)k(m)

1 , . . . , k(m)
m−1

(N〈k(m)〉)
m−1 (uk1 + · · · + ukm−1),

and from symmetry,

λuk =

M
∑

m=2

k(m)βm(m − 1)
∑

k1

P(k1)
k(m)

1 uk1

〈k(m)〉
. (11)

From Eq. (11), we can see that uk must be a linear combination of
k(m). We assume an ansatz of the form

uk =

M
∑

m=2

vmk(m) = kTv, (12)

where v = (v2, . . . , vM) is an unknown vector of non-negative
weights. Renaming the summation indices and evaluating this
ansatz in the eigenvalue equation,

λ

M
∑

j=2

vjk
(j) =

M
∑

i=2

k(i)βi(i − 1)
∑

k1

P(k1)
k(i)

1

∑M
j=2 vjk

(j)
1

〈k(i)〉
.

Changing the order of summation,

λkTv =

M
∑

i=2

M
∑

j=2

k(i) βi(i − 1)

〈k(i)〉
vj

∑

k1

P(k1)k
(i)
1 k

(j)
1 ,

=

M
∑

i=2

M
∑

j=2

k(i) βi(i − 1)〈k(i)k(j)〉

〈k(i)〉
vj, = kTKv.

We call K the degree-size correlation matrix, with entries
Kij = βi(i − 1)〈k(i)k(j)〉/〈k(i)〉, which we call the inter-size
correlations. In Ref. 33, the authors derive a similar matrix for
higher-order percolation processes. Generically (when k is not
orthogonal to the range of K − λI), this equation has a solution if
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and only if λ and v solve the eigenvalue equation λv = Kv. Notice
that in the m-uniform case, we recover the expression we previously
derived. Consider the network formed by specifying hyperedge sizes
(m = 2, . . . , M) to be the nodes and constructing a link between two
sizes m1 and m2 if at least one node in the original hypergraph is
a member of a hyperedge of size m1 and a hyperedge of size m2.
K is irreducible if and only if this network is strongly connected. If
this is the case, by the Perron–Frobenius theorem, the eigenvalue
with largest magnitude is positive and has a corresponding positive
eigenvector, and they correspond, respectively, to λ and v.

C. Perturbation approach for the correlated case

In contrast with the uncorrelated case, we now assume that
nodes are connected with an arbitrary function fm determining the
connection probability. We define

fm(k1, . . . , km) = f(0)m (k1, . . . , km)
[

1 + εgm(k1, . . . , km)
]

, (13)

where ε is a parameter which will later assume to be small and gm

an assortativity function for m-uniform hypergraphs. The assorta-
tivity function gm(k1, . . . , km) determines how likely it is that nodes
with degrees k1, . . . , km are joined by a m-hyperedge; if εgm > 0
(εgm < 0), it is more (less) likely than it would be expected if they
were connected at random. In order to preserve the expected degree
sequence, gm must satisfy

∑

k1 ,...,km
f(0)m (k1, . . . , km)gm(k1, . . . , km)

= 0.
We now assume that the parameter ε is small and develop per-

turbative approximations to the eigenvalue λ and its eigenvector uk.
To first order, these approximations are

λ = λ(0) + ελ(1),

uk = u(0)
k + εu(1)

k ,
(14)

where λ(0) = (m − 1)〈k2〉/〈k〉 and u(0)
k = αk, where α is an arbitrary

constant.
Replacing f (0)

m on the right-hand side of Eq. (6) with the fm
in Eq. (13), using Eq. (14), assuming symmetry of fm, multiplying
by kP(k)/(N〈k〉), summing over k, and canceling the zero-order
terms, we obtain to first order (see Appendix A for more detailed
calculations),

λ(1) = (m − 1)
〈k〉

〈k2〉

∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k2 k2

1 k2, . . . , km−1

(N〈k〉)m gm(k, k1, . . . , km−1). (15)

Removing the reference to gm using the relation in Eq. (13), we
find

ελ(1) = (m − 1)
〈k〉〈kk1〉E

〈k2〉
− λ(0), (16)

where 〈kk1〉E is the mean pairwise product of degrees over all pos-
sible two-node combinations in each hyperedge in the hypergraph,
〈kk1〉E =

∑

e∈E

∑

{i,j}⊆e kikj/
(

|E|
(

m

2

))

.

FIG. 1. An illustration of disassortative and assortative three-uniform hyper-
graphs. The color of the nodes indicates their degree, with low-degree nodes
on the left and high-degree nodes on the right. For a given degree sequence,
the term 〈kk1〉E (the average pairwise product) determines ρ and on average,
(a) hyperedges containing nodes with dissimilar degrees decrease this term lead-
ing to disassortative hypergraphs and (b) hyperedges containing nodes of similar
degree increase this term leading to assortative hypergraphs.

Therefore, the expansion eigenvalue can be written, to first
order, as

λ = λ(0) + ελ(1) = (m − 1)
〈k〉〈kk1〉E

〈k2〉

= λ(0)(1 + ρ), (17)

where we defined

ρ =
〈k〉2〈kk1〉E

〈k2〉2
− 1. (18)

We refer to ρ as the dynamical assortativity for its relation to hyper-
graph dynamics. One can verify that the expected value of ρ for
an uncorrelated hypergraph is 0. Interestingly, to first order, the
expansion eigenvalue does not depend on the particular assortativ-
ity function gm used, but only on the average of pairwise products
of the degrees belonging to the same hyperedge. A schematic of dis-
assortative (ρ < 0) and assortative (ρ > 0) hypergraphs is shown in
Fig. 1.
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IV. NUMERICAL RESULTS

A. Approximating the eigenvalue

We validate our results with numerical simulations on both
synthetic and empirical hypergraphs. For both types of data, we
modify the dynamical assortativity of the datasets by performing
preferential double hyperedge swaps on the hypergraphs.

For each dataset hypergraph H, we focus on an m-uniform par-
tition Hm (i.e., we only consider its hyperedges of size m). We set
a target dynamical assortativity ρ̂ and swap edges as follows. We
choose two hyperedges e1 = {i1, i2, . . . , im} and e2 = {j1, j2, . . . , jm}
and a node from each uniformly at random, say i1 and j1. Then,
we consider the rewired hypergraph H′

m obtained by replacing e1

and e2 with e′
1 = {j1, i2, . . . , im} and e′

2 = {i1, j2, . . . , jm}, respectively.
If the assortativity of H′

m with this hyperedge swap, ρ ′, reduces
the difference between the current assortativity, ρ, and the desired
assortativity, ρ̂, the swap is accepted and we set Hm = H′

m. To ensure
that the algorithm explores the space of possible hypergraphs, we
accept hyperedge swaps which increase the difference between the
desired assortativity and the current assortativity with probability

e−[(ρ̂−ρ)2−(ρ̂−ρ′)
2]/T (we set T = 10−5). We terminate the algorithm

when |ρ − ρ̂| is smaller than a prescribed tolerance or when a max-
imum number of hyperedge swaps have been performed (we used a
tolerance of 10−2 and 106 maximum hyperedge swaps).

For the synthetic hypergraph, we constructed a three-uniform
configuration model (CM) hypergraph of size N = 105 according to
the algorithm described in Ref. 15 with a degree sequence drawn
from a truncated power-law distribution, P(k) ∝ k−3 on [10, 100].
We also used the tags-ask-ubuntu (TAU), congress-bills (CB), and
Eu-Emails (EE) hypergraph datasets from Refs. 34–36, filtered to
only include hyperedges of size 3. The characteristics of these
datasets are described in Table I.

In Fig. 2, the expansion eigenvalue λ calculated numerically
via the power method from Eq. (1) (connected triangles) and the
first-order approximation λ(0) + ελ(1) (connected circles) are plot-
ted as a function of ρ for the four datasets mentioned above. For
each dataset, the starting point [i.e., the point (ρ, λ) for the origi-
nal hypergraph] is shown with a square marker. For the synthetic
hypergraph (a), as expected, the first-order approximation works
well for small values of dynamical assortativity. For the TAU dataset
(b), the agreement is even better than for the synthetic dataset for
larger values of ρ. Interestingly, for the CB (c) and EE (d) datasets,
and to a much lesser extent for the TAU dataset, the value of λ

changes sharply when first increasing (CB dataset and EE datasets),
or both increasing and decreasing (TAU dataset) the assortativity.
We hypothesize that initial hyperedge swaps might be destroying
other structure (such as community structure, clustering, or assorta-
tive mixing by unaccounted attributes), causing λ to change abruptly
as this structure is destroyed and then to change slowly as the effects
of changing the assortativity dominate. We note that there appear
to be limitations to the extent to which ρ can be modified. This is
similar to the limitations to the values of assortativity that networks
and hypergraphs can achieve.37–40

In all cases, we see that rewiring the hypergraph to increase the
average value of 〈kk1〉E (or, equivalently, ρ) has a dramatic effect
on the expansion eigenvalue. For example, for the EE dataset, λ

can be reduced threefold by the rewiring process. Thus, hypergraph

TABLE I. Characteristics of the three-uniform hypergraph datasets used.

Dataset N P(k(3)) 〈k(3)〉

CM 104 18.2

TAU 3029 71.2

CB 1718 20.6

EE 998 53.7

rewiring might be a useful theoretical tool to control dynamical
processes that depend on the expansion eigenvalue.

B. Extinguishing epidemics

Last, we show how modifying the dynamical assortativity by
rewiring hypergraphs can extinguish an epidemic. As an example,
consider a hypergraph SIS contagion spreading among groups of
size m at a fixed rate βm. In Ref. 28, the authors derive a sufficient
condition for epidemic extinction for such models. For m-uniform
hypergraphs and βe = βm, the extinction threshold for the individ-
ual contagion model is βm < βc

m = γ /λ. By decreasing λ through
hyperedge swaps and thus increasing βc

m so that βc
m > βm, the epi-

demic can be extinguished. (Note, however, that this is a sufficient
condition; βm > βc

m may not lead to an epidemic.)
We present an example based on the CB dataset, and additional

cases in Appendix B. In this case, we consider m = 3, γ = 1, and
β3 = 7.9 × 10−3. In Fig. 3(a), we plot the chosen value of β3 as a
fraction of the extinction threshold, β3/β

c
3 (solid line with mark-

ers), which decreases as βc
3 is increased by hyperedge swaps, and the

threshold for extinction (dashed line) β3/β
c
3 = 1. Below the dashed

line, epidemics are impossible. Above the dashed line, they may
be possible. In Fig. 3(b), we plot the percentage of the population
infected as a function of ρ (averaged over 100 realizations of the
epidemic). For more details about the numerical epidemic simula-
tions, see Appendix C. For all values of ρ such that β3/β

c
3 < 1, no

epidemics occur. For large enough values of ρ, however, we see that
epidemics occur.
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FIG. 2. A comparison of the actual expansion eigenvalue λ (connected triangles) to the first-order approximation of the eigenvalue λ(0) + ελ(1) (connected circles) for (a)
the configuration model, (b) the tags-ask-ubuntu dataset, (c) the congress-bills dataset, and (d) the Eu-Emails dataset. The square marker denotes the original (ρ, λ) value
of the dataset. Details of the characteristics of these datasets can be found in Table I.

FIG. 3. (a) The solid line with markers denotes the fixed value of β3 as a fraction
of the extinction threshold, β3/β

c

3 . The dashed line indicates β3/β
c

3 = 1, below
which epidemics are not possible. (b) The epidemic equilibrium (percentage of
the population infected) for each hypergraph given the fixed value of β3. The gray
bars indicate the standard deviation at each data point.

We caution, however, that decreasing λ via hyperedge swaps
might not necessarily suppress epidemics if β3/β

c
3 is not reduced

below 1. In principle, epidemics will occur for values of β3 larger
than a threshold β∗

3 ≥ βc
3, which depends on the hypergraph struc-

ture. If the hyperedge swaps modify this threshold in such a way
that βc

3 < β∗
3 < β3, when originally βc

3 < β3 < β∗
3 , epidemics can

actually be promoted by the rewiring process (we show examples in
Appendix B). Therefore, reduction of β3/β

c
3 by preferential hyper-

edge swaps should be attempted only when one can guarantee that
β3/β

c
3 can be reduced below 1 or when there is already an epidemic.

V. DISCUSSION

In this paper, we have presented a novel definition of assortativ-
ity for hypergraphs, related it to the expansion eigenvalue, and moti-
vated its use in relating assortative structure in hypergraphs to the
epidemic behavior. This approach, however, has limitations regard-
ing the application of the expansion eigenvalue to hypergraphs and
the calculation of the epidemic threshold.

There are two main limitations of the expansion eigenvalue.
The first limitation is that one can think of the matrix associated
to the right-hand side of Eq. (1) as the weighted adjacency matrix of
an effective pairwise network, therefore reducing group interactions
to multiple pairwise interactions. Such a reduction does not always
capture all the complexity of nonlinear dynamical processes.41
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In particular, higher-order dynamical correlations might be missed
by this approach. The second (related) limitation is that, since this
eigenvalue is, by definition, a quantity related to linear processes,
its applicability is restricted in principle only to certain dynamical
regimes. However, approaches that reduce a hypergraph to an effec-
tive pairwise network have been successful and found application in
clustering,42 diffusion and consensus,43 centrality,30 contagion,44 and
other areas. In addition, as we showed, the expansion eigenvalue still
encapsulates a large amount of information about the hypergraph
structure, such as the hyperdegree distribution, correlations between
degrees of different order, and assortative mixing. Therefore, the
expansion eigenvalue should be considered as a complementary tool
to other measures of hypergraph structure.

When deriving approximations to the epidemic threshold for
the SIS model in pairwise networks, many approaches may be con-
sidered, such as using heterogeneous mean-field approaches,5 the
largest eigenvalue of the adjacency matrix23 (the quenched mean-
field approach), the largest eigenvalue of the non-backtracking
matrix,26 the largest eigenvalue of the branching matrix,26 message
passing approaches,45,46 and many others. The differences between
and advantages of these approaches are discussed at length in
Ref. 47. The same is true for the epidemic threshold in hyper-
graphs. Although there are more accurate approximations of the epi-
demic threshold,26,48 we employ the quenched mean-field approach
because of its simple relation to the adjacency tensor of an m-
uniform hypergraph and corresponding explainability. As in the
pairwise network case, more sophisticated approaches49 can yield a
better approximation to the epidemic threshold.

Similarly, there are many ways to derive an approximation to
the largest eigenvalue for pairwise networks, given an adjacency
matrix. The authors in Ref. 50 derive the largest eigenvalue for
a Chung–Lu network excluding any correlations. In Ref. 51, the
authors extend the approach of Ref. 50 by allowing degree–degree
correlations to occur. We use a heterogeneous mean-field approach
as in Ref. 50, which requires certain assumptions. First, we enforce
that the hypergraph is realizable; that is, fm(k(m)

1 , . . . , k(m)
m ) ≤ 1 for

every combination of k(m)
1 , . . . , k(m)

m , which for the uncorrelated case
requires that

k(m)
max ≤

m

√

√

√

√

(

N
∑

i=1

k(m)
i

)m−1

.

For the assortative case, this necessary condition depends on the spe-
cific assortativity function used. In addition, the mean-field approxi-
mation where we assume that nodes with the same hyperdegree have
the same eigenvector entry is valid only when each node has a large
number of connections so that the states of neighbors of nodes with
the same hyperdegree are statistically similar.

Despite these limitations, our results provide a way to connect
various measures of hypergraph structure with dynamical processes
in a systematic way and for a large class of tunable null models.
We believe that exploring the role of the expansion eigenvalue in
other dynamical processes on hypergraphs will be a fruitful research
direction.
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APPENDIX A: MORE DETAILED DERIVATION OF THE

PERTURBED EIGENVALUE

We start with the expansion of Eq. (2) in the main text to first
order (we recall that we are considering an m-uniform hypergraph),
which is

αλ(0)k + ελ(0)u(1)
k + αελ(1)k

= α
∑

k1 ,...,km−1

N(k1), . . . , N(km−1)

×
k k1, . . . , km−1

(N〈k〉)m−1 (k1 + · · · + km−1)

+ ε
∑

k1 ,...,km−1

N(k1), . . . , N(km−1)

×
k k1, . . . , km−1

(N〈k〉)m−1 (u(1)
k1

+ · · · + u(1)
km−1

)

+ αε
∑

k1 ,...,km−1

N(k1), . . . , N(km−1)
k k1, . . . , km−1

(N〈k〉)m−1

× gm(k, k1, . . . , km−1)(k1 + · · · + km−1). (A1)

From the 0th order approximation, the first terms on both sides
of the equation are equal and we can cancel them. Second, assuming
symmetry of fm and gm, we can simplify the right-hand side as

ελ(0)u(1)
k + αελ(1)k

= ε(m − 1)k
∑

k1

P(k1)
k1u

(1)
k1

〈k〉

+ αε(m − 1)
∑

k1 ,...,km−1

N(k1), . . . , N(km−1)

×
k k2

1 k2, . . . , km−1

(N〈k〉)m−1 gm(k, k1, . . . , km−1).
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We multiply both sides by k P(k)/〈k〉 and sum over k, which
yields

ελ(0)
∑

k

P(k)
k u(1)

k

〈k〉
+ αελ(1)

∑

k

P(k)
k2

〈k〉

= ε(m − 1)
∑

k

P(k)
k2

〈k〉

∑

k1

P(k1)
k1u

(1)
k1

〈k〉

+ αε(m − 1)
∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k2 k2

1 k2, . . . , km−1

(N〈k〉)m gm(k, k1, . . . , km−1).

Because λ(0) = (m − 1)〈k2〉/〈k〉, the first terms on both sides are
equal and we cancel them, yielding

ελ(1) = ε(m − 1)
〈k〉

〈k2〉

∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k2 k2

1, . . . , km−1

(N〈k〉)m gm(k, k1, . . . , km−1). (A2)

We can use the relation that fm(k1, . . . , km) = (m − 1)!k1, . . . ,
km/(N〈k〉)m−1 [1 + εgm(k1, . . . , km)

]

to remove the reference to gm,
obtaining

ελ(1) =
(m − 1)

(m − 1)!

〈k〉

〈k2〉

∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k k1

N〈k〉
fm(k, k1, . . . , km−1)

− (m − 1)
〈k〉

〈k2〉

∑

k,k1

P(k)P(k1)
k2 k2

1

〈k〉2
.

The term

1

2!(m − 2)!

∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

× kk1fm(k, k1, . . . , km−1)

represents the expected sum of all products of degrees for pairs
of nodes belonging to the same hyperedge [where the factors 2!
and (m − 2)! correct for overcounting permutations of k, k1 and
k2, k3, . . . , km−1, respectively]. Since the number of possible pairwise
products in an m-uniform hypergraph is given by

∑

e∈E

∑

k,k′∈e,k 6=k′

1 =

(

m
2

)

|E| =

(

N〈k〉

m

)(

m(m − 1)

2

)

=
(m − 1)N〈k〉

2
, (A3)

letting |E| be the number of edges, we can express λ(1) in terms of

〈kk1〉E =
1

(m − 1)!

∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k k1

N〈k〉
fm(k, k1, . . . , km−1),

the average of pairwise degree products over pairs of connected
nodes, as

ελ(1) = (m − 1)
〈k〉〈kk1〉E

〈k2〉
− λ(0).

Therefore,

λ = λ(0) + ελ(1) = (m − 1)
〈k〉〈kk1〉E

〈k2〉
= λ(0)(1 + ρ), (A4)

where

ρ =
〈k〉2〈kk1〉E

〈k2〉2
− 1. (A5)

APPENDIX B: SUPPRESSING EPIDEMICS THROUGH

PREFERENTIAL REWIRING

In this section, we include additional plots of the effect of disas-
sortative rewiring on the epidemic extent. We consider the CM and
EE datasets described in the main text. The following plots have the
same structure as that in the main text, so we omit the legend for
simplicity.

In Fig. 4(a), we see the same behavior as that of the CB dataset.
We comment that, as we expect, the epidemic threshold is fairly
close to the predicted extinction threshold. In Figs. 4(b) and 4(d), we
see behavior that differs from that of the CB dataset but is consistent
with our theoretical approach. In Fig. 4(b), we see that the epi-
demic extent is roughly less than 0.25% for all values of ρ. This does
not contradict the bounds we derived because there is no epidemic
below the extinction threshold. The behavior in Fig. 4(d) indicates
that additional structure is present in the original hypergraph that
seems to be suppressing the epidemic as well and warrants further
study.

As discussed in the text, it is possible that if hyperedge swaps
do not bring β3/β

c
3 below 1 as in Fig. 4(d), the process results in an

epidemic. While we only see this for the EE dataset, one should be
cautious of rewiring the hypergraph unless one can guarantee that
β3/β

c
3 < 1 can be achieved.

APPENDIX C: NUMERICAL SIMULATIONS

We model the hypergraph SIS contagion process as a
continuous-time discrete-state (CTDS) Markov process, in contrast
to Refs. 15 and 16, which assume a discrete-time (DTDS) process. In
Ref. 53, the authors find that discrete-time processes inaccurately
model contagion processes due to higher-order correlations. We
note that as the time step in a DTDS process approaches zero, we
recover the dynamics of the continuous-time process.

As described in the main text, we consider a three-uniform
hypergraph of size N. We specify a spontaneous healing rate γ and
an infection rate β3 at which an infected three-hyperedge infects a
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FIG. 4. Additional plots of preferential rewiring and the corresponding epidemic response. Each subplot corresponds to a particular choice of infectious rate and dataset and
follows the same format as Fig. 3.

susceptible node. The total rate at which infected nodes recover is
given by the number of infected nodes NI multiplied by the heal-
ing rate γ . The rate at which each susceptible node i is infected is
given by the number of infected hyperedges (hyperedges with at
least one infected neighbor) of which it is a member, NE

i , multiplied
by the infection rate β3, and the total infection rate is β3

∑N
i=1 NE

i .
The total rate at which these disjoint events occur is their sum, i.e.,
R = γ NI + β3

∑N
i=1 NE

i .

For this CTDS process, the time between events, τ , is drawn
from the exponential distribution with rate R. Once this time
has been determined, we must determine which type of event
occurred. The probability that a node recovers is p = γ NI/R and the

probability that a node becomes infected is 1 − p and so we can
draw the event from a Bernoulli distribution with parameter p. Next,
we must determine the node for which this event occurred. If an
infected node has recovered, we select this node uniformly at ran-
dom from the list of infected nodes. If a susceptible node has become
infected, we select a node from the list of infected nodes according

to the probabilities pi = NE
i /

(

∑N
i=1 NE

i

)

for each node i.

Once the time increment, event type, and affected node have
been determined, we first increment the time ti by τ ; second, we
increment the number of infected individuals by one and decrease
the number of susceptible individuals by one for an infection event
(vice versa for a recovery event); and last, we update the list of
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susceptible and infected nodes as well as the rates of each mech-
anism. We repeat these steps until either t exceeds a maximum
specified time or the number of infected nodes is zero. We refer to
this termination time as T and the corresponding number of discrete
data points as NT. Modeling the SIS contagion process as a CTDS
process can be more efficient than a DTDS process when R is small
because the exponential distribution allows the simulation to take
large steps in time when R is small.

To recover the equilibrium from these simulations, we aver-
age over the last 10% of the simulation time, i.e., the interval
[T0, T], where T0 = 0.9T. We calculate a weighted average of the
number of infected nodes, where the weight on the first data
point is proportional to the average interevent time in the inter-
val [T0, T] and each subsequent weight is proportional to the
interevent time between the previous data point and the current data
point.
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