1. (28 points: 7 each) If the statement is always true mark "TRUE" and provide a brief justification; if it is possible for the statement to be false then mark "FALSE" and provide a counterexample.
(a) Suppose H is the Householder matrix corresponding to unit vector \mathbf{u}. Then, $H \mathbf{u}=-\mathbf{u}$.

Solution:

True. We know that $H=I-2 \mathbf{u u}^{T}$ and $1=\|\mathbf{u}\|_{2}=\mathbf{u}^{T} \mathbf{u}$. So,

$$
\begin{aligned}
H \mathbf{u} & =\left(I-2 \mathbf{u} \mathbf{u}^{T}\right) \mathbf{u} \\
& =\mathbf{u}-2 \mathbf{u u}^{T} \mathbf{u} \\
& =\mathbf{u}-2 \mathbf{u} \\
& =-\mathbf{u}
\end{aligned}
$$

(b) The 1-norm on \mathbb{R}^{n} is associated with an inner product. That is, there exists an inner product such that $\|\mathbf{x}\|_{1}=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$.

Solution:

False. If a norm is associated with an inner-product, then

$$
\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}=2\left(\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\right)
$$

for each \mathbf{x} and \mathbf{y}. So, consider $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. We see that

$$
\|\mathbf{x}+\mathbf{y}\|_{1}^{2}+\|\mathbf{x}-\mathbf{y}\|_{1}^{2}=5^{2}+1^{2}=26
$$

and

$$
2\left(\|\mathbf{x}\|_{1}^{2}+\|\mathbf{y}\|_{1}^{2}\right)=2\left(2^{2}+1^{2}\right)=10
$$

(c) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subseteq \mathbb{R}^{n}$ is an orthogonal set of vectors, then $A=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ is an orthogonal matrix.

Solution:

False. The columns of $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ are orthogonal, but $A^{T} A=2 I$, so A is not orthogonal.
(d) If \mathcal{V} has inner-product $\langle\cdot, \cdot\rangle$ with associated norm $\|\cdot\|$, then $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$ whenever \mathbf{x} and \mathbf{y} are orthogonal.

Solution:

True. Suppose \mathcal{V} has inner-product $\langle\cdot, \cdot\rangle$ with associated norm $\|\cdot\|$ and that \mathbf{x} and \mathbf{y} are orthogonal. Then,

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}\rangle+2\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}\rangle+2 \cdot 0+\langle\mathbf{y}, \mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2} .
\end{aligned}
$$

2. (21 points) For each of the following matrices, determine if it is positive definite. If it is, determine its Cholesky Factorization.
(a) $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & 1\end{array}\right]$
(b) $B=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 1\end{array}\right]$
(c) $C=\left[\begin{array}{ccc}1 & -3 & 1 \\ 2 & -2 & 1 \\ 3 & 7 & 5\end{array}\right]$
(a) We see that A is symmetric. Row reducing, we see that

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 3 & -1 \\
0 & -1 & 1
\end{array}\right] \rightarrow^{R_{2}^{\prime}=R_{2}-2 R_{1}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & -1 \\
0 & -1 & 1
\end{array}\right] \rightarrow^{R_{3}^{\prime}=R_{3}-R_{2}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & -1 \\
0 & 0 & 2
\end{array}\right] .
$$

So, A is symmetric and regular, but it does not have positive pivots when reduced to REF using only row operations of type 1 . So, A is not positive definite.
(b) We see that B is symmetric. Row reducing, we see that

$$
B=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 3 & -1 \\
0 & -1 & 1
\end{array}\right] \rightarrow^{R_{2}^{\prime}=R_{2}-\frac{1}{2} R_{1}}\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{5}{2} & -1 \\
0 & -1 & 1
\end{array}\right] \rightarrow^{R_{3}^{\prime}=R_{3}+\frac{2}{5} R_{2}}\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{5}{2} & -1 \\
0 & 0 & \frac{3}{5}
\end{array}\right]=U .
$$

Since B is symmetric, regular, and has positive pivots when reduced to REF using only row operations of type 1 , then B is positive definite.
We set out to find the Cholesky factor of B. With U as defined above, we have

$$
U=D L^{T}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & \frac{5}{2} & 0 \\
0 & 0 & \frac{3}{5}
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{1}{2} & 0 \\
0 & 1 & -\frac{2}{5} \\
0 & 0 & 1
\end{array}\right] .
$$

So, the Cholesky factor is

$$
G=L D^{\frac{1}{2}}=\left[\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
\frac{\sqrt{2}}{2} & \sqrt{\frac{5}{2}} & 0 \\
0 & -\frac{2 \sqrt{5}}{5 \sqrt{2}} & \sqrt{\frac{3}{5}}
\end{array}\right] .
$$

(c) We see that C is not symmetric, so C is not positive definite.
3. (21 points) Consider $A=\left[\begin{array}{ccc}3 & 2 & 5 \\ 6 & 1 & 1 \\ 6 & -2 & 10\end{array}\right]$.
(a) Determine the Gram-Schmidt $Q R$-Factorization of A.
(b) Use the Gram-Schmidt $Q R$-Factorization of A to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{l}24 \\ 42 \\ 54\end{array}\right]$. (Other methods of solving $A \mathbf{x}=\mathbf{b}$ will earn no credit here.)
(a) We apply the Gram-Schmidt algorithm to the columns of A and then normalize; this will provide the columns of Q.
Write $A=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}\right]$. Then, the Gram-Schmidt algorithm gives

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{a}_{1}=\left[\begin{array}{l}
3 \\
6 \\
6
\end{array}\right] \\
& \mathbf{v}_{2}=\mathbf{a}_{2}-\frac{\mathbf{a}_{2}^{T} \mathbf{v}_{1}}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right] \\
& \mathbf{v}_{3}=\mathbf{a}_{3}-\frac{\mathbf{a}_{3}^{T} \mathbf{v}_{1}}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{a}_{3}^{T} \mathbf{v}_{2}}{\mathbf{v}_{2}^{T} \mathbf{v}_{2}} \mathbf{v}_{2}=\left[\begin{array}{c}
4 \\
-4 \\
2
\end{array}\right] .
\end{aligned}
$$

We can then normalize to get the orthonormal basis

$$
\left\{\mathbf{u}_{1}=\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \mathbf{u}_{2}=\frac{1}{3}\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right], \mathbf{u}_{3}=\frac{1}{3}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]\right\}
$$

So,

$$
Q=\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right] .
$$

From this, we see that

$$
R=Q^{T} A=\left[\begin{array}{ccc}
9 & 0 & 9 \\
0 & 3 & -3 \\
0 & 0 & 6
\end{array}\right],
$$

where $A=Q R$.
(b) We have

$$
\mathbf{b}=A \mathbf{x}=Q R \mathbf{x},
$$

which implies we need only solve

$$
R \mathbf{x}=Q^{T} \mathbf{b}=\left[\begin{array}{c}
72 \\
-6 \\
6
\end{array}\right]
$$

Since R is upper triangular, we need only use back substitution to see that

$$
\mathbf{x}=\left[\begin{array}{c}
7 \\
-1 \\
1
\end{array}\right] .
$$

4. (30 points) Consider the vector space $C^{0}[0,1]$, the space of continuous real-valued functions with domain $[0,1]$. Throughout this problem, make use of the inner-product $\langle f, g\rangle=$ $\int_{0}^{1} f(x) g(x) e^{x} d x$.
You may use the following values in this problem without justification:

$$
\begin{aligned}
& \int_{0}^{1} x e^{x} d x=1 \\
& \int_{0}^{1} x^{2} e^{x} d x=e-2 \\
& \int_{0}^{1} x^{3} e^{x} d x=6-2 e \\
& \int_{0}^{1} x^{4} e^{x} d x=9 e-24 \\
& \int_{0}^{1} x^{5} e^{x} d x=120-44 e
\end{aligned}
$$

Complete the following:
(a) Prove $\langle f, g\rangle$ is an inner product on $C^{0}[0,1]$.
(b) Determine the angle between $f(x)=x$ and $g(x)=1$. (Provide an exact expression for your answer, not a decimal approximation.)
(c) Consider the subspace $\mathcal{W}=\operatorname{Span}\{1, x\}$ of $C^{0}[0,1]$. Determine an orthogonal basis for this subspace.
(d) Find the orthogonal projection of x^{2} onto $\mathcal{W}=\operatorname{Span}\{1, x\}$. (Write your answer as a linear combination of an appropriate basis where the coefficients are simplified.)

Solution:

(a) We check each of the axioms. Suppose $f, g, h \in C^{0}[0,1]$ and $c, d \in \mathbb{R}$.

- Bilinearity:

$$
\begin{aligned}
\langle c f+d g, h\rangle & =\int_{0}^{1}(c f(x)+d g(x)) h(x) e^{x} d x \\
& =c \int_{0}^{1} f(x) h(x) e^{x} d x+d \int_{0}^{1} g(x) h(x) e^{x} d x \\
& =c\langle f, h\rangle+d\langle g, h\rangle .
\end{aligned}
$$

- Symmetry:

$$
\begin{aligned}
\langle f, g\rangle & =\int_{0}^{1} f(x) g(x) e^{x} d x \\
& =\int_{0}^{1} g(x) f(x) e^{x} d x \\
& =\langle g, f\rangle .
\end{aligned}
$$

- Positivity It is clear that

$$
\langle f, f,\rangle=\int_{0}^{1}[f(x)]^{2} e^{x} d x \geq 0
$$

because $[f(x)]^{2} e^{x} \geq 0$. Further, if $\langle f, f\rangle=$,0 , then $[f(x)]^{2} e^{x}=0$ (since the integrand is continuous), which means $f(x)=0$.
(b) Let θ be the angle between $f(x)=x$ and $g(x)=1$. Then, $\cos \theta=\frac{\langle f, g\rangle}{\|f\|\| \| g \|}$. We note that

$$
\begin{gathered}
\langle f, g\rangle=\int_{0}^{1} x e^{x} d x=1 \\
\|f\|=\sqrt{\langle f, f\rangle}=\sqrt{\int_{0}^{1} x^{2} e^{x} d x}=\sqrt{e-2}
\end{gathered}
$$

and

$$
\|g\|=\sqrt{\langle g, g\rangle}=\sqrt{\int_{0}^{1} e^{x} d x}=\sqrt{e-1}
$$

So, $\cos \theta=\frac{1}{\sqrt{(e-1)(e-2)}}$, which means

$$
\theta=\arccos \left(\frac{1}{\sqrt{(e-1)(e-2)}}\right) .
$$

(c) We know that $\{1, x\}$ is not itself an orthogonal basis because we showed in (b) that the angle between 1 and x is not $\frac{\pi}{2}$. So, we will apply the Gram-Schmidt algorithm to these vectors:

$$
\begin{aligned}
v_{1} & =1 \\
v_{2} & =x-\frac{\langle x, 1\rangle}{\|1\|^{2}} \cdot 1 \\
& =x-\frac{1}{e-1} .
\end{aligned}
$$

So, an orthogonal basis for \mathcal{W} is $\left\{1, x-\frac{1}{e-1}\right\}$.
(d) We will use our basis from (c). The orthogonal projection is

$$
\begin{aligned}
w & =\frac{\left\langle x^{2}, 1\right\rangle}{\|1\|^{2}} \cdot 1+\frac{\left\langle x^{2}, x-\frac{1}{e-1}\right\rangle}{\left\|x-\frac{1}{e-1}\right\|^{2}}\left(x-\frac{1}{e-1}\right) \\
& =\frac{e-2}{e-1}+\frac{\left\langle x^{2}, x\right\rangle-\frac{1}{e-1}\left\langle x^{2}, 1\right\rangle}{\langle x, x\rangle-\frac{2}{e-1}\langle x, 1\rangle+\frac{1}{(e-1)^{2}}\langle 1,1\rangle}\left(x-\frac{1}{e-1}\right) \\
& =\frac{e-2}{e-1}+\frac{6-2 e-\frac{e-2}{e-1}}{e-2-\frac{2}{e-1}+\frac{1}{e-1}}\left(x-\frac{1}{e-1}\right) \\
& =\frac{e-2}{e-1}+\frac{-2 e^{2}+7 e-4}{e^{2}-3 e+1}\left(x-\frac{1}{e-1}\right) .
\end{aligned}
$$

