1. (28 points: 7 each) If the statement is **always true** mark "TRUE" and provide a *brief* justification; if it is possible for the statement to be false then mark "FALSE" and provide a counterexample.

(a) If U is an upper triangular matrix and has an inverse, then its inverse is lower triangular.

False. As a counterexample, consider the upper triangular matrix $U = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. It's inverse is $U^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ which is not lower triangular.

(b) If the rank of A is 2 and A is a 2×4 matrix, then the kernel of A has dimension 2.

True. From the Fundamental Theorem of Linear Algebra (FTLA), we know that the number of columns of A is the sum of the rank of A and the dimension of the kernal of A. That is, $4 = 2 + \dim(\ker(A))$, which implies $\dim(\ker(A)) = 2$.

(c) If det(A) = 0, then $A\mathbf{x} = \mathbf{b}$ has no solutions.

False. Consider $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{b} = \mathbf{0}$. We have $\det(A) = 0$ but $A\mathbf{x} = \mathbf{b}$ has solution $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(d) If \mathcal{W} is the set of $n \times n$ matrices, A, such that $\det(A) = 0$, then \mathcal{W} a subspace of the $\mathbb{R}^{n \times n}$, the vector space of all $n \times n$ matrices.

False. Note that $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ both lie in \mathcal{W} , but A + B = I does not. That is, \mathcal{W} is not closed under addition, so \mathcal{W} cannot be a subspace of $\mathbb{R}^{n \times n}$.

2. (16 points) Consider
$$A = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & 1 & -2 & -1 \\ 1 & 2 & -4 & -3 \\ 0 & 3 & -6 & -2 \end{bmatrix}$$
. *A* is row equivalent to $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and A^{T} is row equivalent to $\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Use this information to determine bases for the four fundamental subspaces associated with the matrix *A*. (Clearly indicate which basis belongs to which subspace.)

The columns of A that correspond to the pivots of its reduced form are a basis for Ran(A):

ſ	[1]		[-1]		1		
J	2		1		-1		
Ì	1	,	2	,	-3		} .
l	0		3		-2	J	

The rows of a row echelon form of A form a basis for Coran(A):

ſ	[1]		0		0)	
J	0		1		0		
Ì	0	,	-2	,	0		Ì.
l	0		0		1	J	

To find a basis for ker(A), we consider the solutions of $A\mathbf{x} = \mathbf{0}$. Note that $x_1 = 0$, $x_2 = 2x_3$, and $x_4 = 0$ where x_3 is free. So, a basis for ker(A) is

$$\left\{ \begin{bmatrix} 0\\2\\1\\0 \end{bmatrix} \right\}.$$

To find a basis for $\operatorname{Coker}(A)$, we consider the solutions of $A^T \mathbf{x} = \mathbf{0}$. Note that $x_1 = 3x_4$, $x_2 = -2x_4$, and $x_3 = x_4$ where x_4 is free. So, a basis for $\operatorname{Coker}(A)$ is

$$\left\{ \begin{bmatrix} 3\\-2\\1\\1 \end{bmatrix} \right\}.$$

3. Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 5 \\ 2 & 1 & 2 \end{bmatrix}$.

(a) (14 points) Use Gauss-Jordan Elimination to find the inverse of **A**.

We set up the augmented matrix [A|I] and row reduce until we have I on the left-side of the partition.

$$[A|I] = \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 3 & 5 & 5 & | & 0 & 1 & 0 \\ 2 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R'_2 = R_2 - 3R_1}_{R'_3 = R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & -1 & -4 & | & -3 & 1 & 0 \\ 0 & -3 & -4 & | & -2 & 0 & 1 \end{bmatrix} \xrightarrow{R'_2 = -R_2}_{R'_2 = -R_2}$$

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 4 & | & 3 & -1 & 0 \\ 0 & -3 & -4 & | & -2 & 0 & 1 \end{bmatrix} \xrightarrow{R_1'=R_1-2R_2}_{R_3'=R_3+3R_2} \begin{bmatrix} 1 & 0 & -5 & | & -5 & 2 & 0 \\ 0 & 1 & 4 & | & 3 & -1 & 0 \\ 0 & 0 & 8 & | & 7 & -3 & 1 \end{bmatrix} \xrightarrow{R_3'=\frac{1}{8}R_3}$$

$$\begin{bmatrix} 1 & 0 & -5 & | & -5 & 2 & 0 \\ 0 & 1 & 4 & | & 3 & -1 & 0 \\ 0 & 0 & 1 & | & \frac{7}{8} & \frac{-3}{8} & \frac{1}{8} \end{bmatrix} \xrightarrow{R'_1 = R_1 + 5R_3}_{R'_2 = R_2 - 4R_3} \begin{bmatrix} 1 & 0 & 0 & | & -\frac{5}{8} & \frac{1}{8} & \frac{5}{8} \\ 0 & 1 & 0 & | & -\frac{4}{8} & \frac{4}{8} & -\frac{4}{8} \\ 0 & 0 & 1 & | & \frac{7}{8} & \frac{-3}{8} & \frac{1}{8} \end{bmatrix}$$

So, we have $A^{-1} = \frac{1}{8} \begin{bmatrix} -5 & 1 & 5 \\ -4 & 4 & -4 \\ 7 & -3 & 1 \end{bmatrix}$.

(b) (6 points) Use your answer from (a) to find the solution of

$$\begin{cases} x_1 + 2x_2 + 3x_3 = -3\\ 3x_1 + 5x_2 + 5x_3 = 0\\ 2x_1 + x_2 + 2x_3 = 2 \end{cases}$$

You must use your answer from (a) to receive points. (Other methods will receive no points.)

$$\mathbf{x} = A^{-1}\mathbf{b} = \frac{1}{8} \begin{bmatrix} -5 & 1 & 5\\ -4 & 4 & -4\\ 7 & -3 & 1 \end{bmatrix} \begin{bmatrix} -3\\ 0\\ 2 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 25\\ 4\\ -19 \end{bmatrix}.$$

4. (15 points) Prove that if A is nonsingular, then $A^T A$ is also nonsingular.

One Possibility:

Recall that a matrix is nonsingular if and only if it is its determinant is nonzero. Also, $det(A) = det(A^T)$. So, det(A) is nonzero and

$$\det(A^T A) = \det(A^T) \det(A) = \det(A) \det(A) = \det(A)^2 \neq 0.$$

Thus, $A^T A$ is nonsingular.

Another Possibility:

Recall that a matrix is nonsingular if and only if it is invertible. Since A is invertible, then we know that A^T is also invertible with inverse $(A^T)^{-1} = (A^{-1})^T$. We observe that

$$(A^{T}A)(A^{-1}(A^{-1})^{T}) = A^{T}(AA^{-1})(A^{-1})^{T}$$
$$= A^{T}I(A^{-1})^{T}$$
$$= A^{T}(A^{-1})^{T}$$
$$= I.$$

We have shown that $A^T A$ is invertible. Therefore it is nonsingular.

5. Let
$$A = \begin{bmatrix} 0 & 0 & -4 \\ 1 & 2 & 3 \\ 0 & 1 & 7 \end{bmatrix}$$
.
(a) (15 points) Determine the permuted LU-factorization of A .

 $A \to^{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -4 \\ 0 & 1 & 7 \end{bmatrix} \to^{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 7 \\ 0 & 0 & -4 \end{bmatrix} = U$

where
$$L = I$$
 because no elimination operations were applied, and

	Γ1	0	0]	[0	1	0]		[0	1	0]
P =	0	0	1	1	0	0	=	0	0	1
	0	1	0	0	0	1		$\lfloor 1$	0	0

because of the row interchanges that were applied. With these matrices, we have PA = LU.

(b) (6 points) Use the answer from (a) to find the determinant of A. (Other methods will receive no credit here.)

From (a), we know U and that N = 2 because two elementary permuations were applied. So,

$$\det(A) = (-1)^N \det(U) = (-1)^2 (1)(1)(-4) = -4.$$