1. (28 points: 7 each) If the statement is always true mark "TRUE" and provide a brief justification; if it is possible for the statement to be false then mark "FALSE" and provide a counterexample.
(a) If U is an upper triangular matrix and has an inverse, then its inverse is lower triangular.

False. As a counterexample, consider the upper triangular matrix $U=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$. It's inverse is $U^{-1}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$ which is not lower triangular.
(b) If the rank of A is 2 and A is a 2×4 matrix, then the kernel of A has dimension 2 .

True. From the Fundamental Theorem of Linear Algebra (FTLA), we know that the number of columns of A is the sum of the rank of A and the dimension of the kernal of A. That is, $4=2+\operatorname{dim}(\operatorname{ker}(A))$, which implies $\operatorname{dim}(\operatorname{ker}(A))=2$.
(c) If $\operatorname{det}(A)=0$, then $A \mathbf{x}=\mathbf{b}$ has no solutions.

False. Consider $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\mathbf{b}=\mathbf{0}$. We have $\operatorname{det}(A)=0$ but $A \mathbf{x}=\mathbf{b}$ has solution $\mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(d) If \mathcal{W} is the set of $n \times n$ matrices, A, such that $\operatorname{det}(A)=0$, then \mathcal{W} a subspace of the $\mathbb{R}^{n \times n}$, the vector space of all $n \times n$ matrices.

False. Note that $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ both lie in \mathcal{W}, but $A+B=I$ does not.
That is, \mathcal{W} is not closed under addition, so \mathcal{W} cannot be a subspace of $\mathbb{R}^{n \times n}$.
2. (16 points) Consider $A=\left[\begin{array}{cccc}1 & -1 & 2 & 1 \\ 2 & 1 & -2 & -1 \\ 1 & 2 & -4 & -3 \\ 0 & 3 & -6 & -2\end{array}\right]$. A is row equivalent to $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ and A^{T} is row equivalent to $\left[\begin{array}{cccc}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Use this information to determine bases for the four fundamental subspaces associated with the matrix A. (Clearly indicate which basis belongs to which subspace.)

The columns of A that correspond to the pivots of its reduced form are a basis for $\operatorname{Ran}(A)$:

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
-3 \\
-2
\end{array}\right]\right\}
$$

The rows of a row echelon form of A form a basis for $\operatorname{Coran}(A)$:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

To find a basis for $\operatorname{ker}(A)$, we consider the solutions of $A \mathbf{x}=\mathbf{0}$. Note that $x_{1}=0, x_{2}=2 x_{3}$, and $x_{4}=0$ where x_{3} is free. So, a basis for $\operatorname{ker}(A)$ is

$$
\left\{\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]\right\} .
$$

To find a basis for $\operatorname{Coker}(A)$, we consider the solutions of $A^{T} \mathbf{x}=\mathbf{0}$. Note that $x_{1}=3 x_{4}$, $x_{2}=-2 x_{4}$, and $x_{3}=x_{4}$ where x_{4} is free. So, a basis for $\operatorname{Coker}(A)$ is

$$
\left\{\left[\begin{array}{c}
3 \\
-2 \\
1 \\
1
\end{array}\right]\right\}
$$

3. Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 5 & 5 \\ 2 & 1 & 2\end{array}\right]$.
(a) (14 points) Use Gauss-Jordan Elimination to find the inverse of \mathbf{A}.

We set up the augmented matrix $[A \mid I]$ and row reduce until we have I on the left-side of the partition.

$$
\left[\begin{array}{ccc:ccc}
1 & 0 & -5 & -5 & 2 & 0 \\
0 & 1 & 4 & 3 & -1 & 0 \\
0 & 0 & 1 & \frac{7}{8} & \frac{-3}{8} & \frac{1}{8}
\end{array}\right] \rightarrow \rightarrow_{R_{2}^{\prime}=R_{2}-4 R_{3}}^{\substack{\prime \\
R_{1} \\
R_{1}+5 R_{3}}}\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & -\frac{5}{8} & \frac{1}{8} & \frac{5}{8} \\
0 & 1 & 0 & -\frac{4}{8} & \frac{4}{8} & -\frac{4}{8} \\
0 & 0 & 1 & \frac{7}{8} & \frac{-3}{8} & \frac{1}{8}
\end{array}\right]
$$

So, we have $A^{-1}=\frac{1}{8}\left[\begin{array}{ccc}-5 & 1 & 5 \\ -4 & 4 & -4 \\ 7 & -3 & 1\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & \mid & 3 & -1 \\
0 & -3 & -4 & -2 & 0 & 1
\end{array}\right] \rightarrow \rightarrow \begin{array}{cc|ccc}
R_{1}^{\prime}=R_{1}-2 R_{2} \\
R_{3}^{\prime}=R_{3}+3 R_{2}
\end{array}\left[\begin{array}{cccc|cc|}
1 & 0 & -5 & -5 & 2 & 0 \\
0 & 1 & 4 & 3 & -1 & 0 \\
0 & 0 & 8 & 7 & -3 & 1
\end{array}\right] \rightarrow \rightarrow^{R_{3}^{\prime}=\frac{1}{8} R_{3}}}
\end{aligned}
$$

(b) (6 points) Use your answer from (a) to find the solution of

$$
\left\{\begin{array}{rl}
x_{1}+2 x_{2}+3 x_{3} & =-3 \\
3 x_{1}+5 x_{2}+5 x_{3} & =0 \\
2 x_{1}+x_{2}+2 x_{3} & =2
\end{array} .\right.
$$

You must use your answer from (a) to receive points. (Other methods will receive no points.)

$$
\mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{8}\left[\begin{array}{ccc}
-5 & 1 & 5 \\
-4 & 4 & -4 \\
7 & -3 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
0 \\
2
\end{array}\right]=\frac{1}{8}\left[\begin{array}{c}
25 \\
4 \\
-19
\end{array}\right] .
$$

4. (15 points) Prove that if A is nonsingular, then $A^{T} A$ is also nonsingular.

One Possibility:

Recall that a matrix is nonsingular if and only if it is its determinant is nonzero. Also, $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$. So, $\operatorname{det}(A)$ is nonzero and

$$
\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}(A)=\operatorname{det}(A)^{2} \neq 0
$$

Thus, $A^{T} A$ is nonsingular.

Another Possibility:

Recall that a matrix is nonsingular if and only if it is invertible. Since A is invertible, then we know that A^{T} is also invertible with inverse $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. We observe that

$$
\begin{aligned}
\left(A^{T} A\right)\left(A^{-1}\left(A^{-1}\right)^{T}\right) & =A^{T}\left(A A^{-1}\right)\left(A^{-1}\right)^{T} \\
& =A^{T} I\left(A^{-1}\right)^{T} \\
& =A^{T}\left(A^{-1}\right)^{T} \\
& =I .
\end{aligned}
$$

We have shown that $A^{T} A$ is invertible. Therefore it is nonsingular.
5. Let $A=\left[\begin{array}{ccc}0 & 0 & -4 \\ 1 & 2 & 3 \\ 0 & 1 & 7\end{array}\right]$.
(a) (15 points) Determine the permuted LU-factorization of A.

$$
A \rightarrow R_{1} \leftrightarrow R_{2}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & -4 \\
0 & 1 & 7
\end{array}\right] \rightarrow^{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 7 \\
0 & 0 & -4
\end{array}\right]=U
$$

where $L=I$ because no elimination operations were applied, and

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

because of the row interchanges that were applied. With these matrices, we have $P A=$ $L U$.
(b) (6 points) Use the answer from (a) to find the determinant of A. (Other methods will receive no credit here.)

From (a), we know U and that $N=2$ because two elementary permuations were applied. So,

$$
\operatorname{det}(A)=(-1)^{N} \operatorname{det}(U)=(-1)^{2}(1)(1)(-4)=-4 .
$$

