1. [2360/063023 (24 pts)] The following parts (a) and (b) are not related.
(a) (12 pts) Suppose that \mathbf{A}, \mathbf{B}, and \mathbf{C} are $n \times n$ matrices with $|\mathbf{A}|=0,|\mathbf{B}|=3,|\mathbf{C}|=1$ and that \mathbf{D} is an $m \times n$ matrix. Calculate the following or explain why they fail to exist.
i. $|\mathbf{C B}|$
ii. $\left|\mathbf{C}^{\mathrm{T}}\right|$
iii. $\left|\mathbf{C}^{2}\left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\right|$
iv. $|\mathbf{D A}|$
(b) (12 pts) Let $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 1 & 3\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$. Calculate the following or explain why they fail to exist.
i. $\mathbf{A B}$
ii. $\mathbf{A B}^{T}$
iii. $\mathbf{A}+\mathbf{B}$
iv. $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{T}}$

SOLUTION:

(a) i. $|\mathbf{C B}|=|\mathbf{C}||\mathbf{B}|=(1)(3)=3$
ii. $\left|\mathbf{C}^{\mathrm{T}}\right|=|\mathbf{C}|=1$
iii. does not exist, since $|\mathbf{A}|=0$
iv. does not exist, because DA is not square
(b) i. Does not exist because the dimensions are a 2×3 and 2×3
ii. $\mathbf{A} \mathbf{B}^{T}=\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 4 & 7\end{array}\right]$
iii. $\mathbf{A}+\mathbf{B}=\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 1 & 3\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 2 & 5\end{array}\right]$
iv. $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{T}}=\left[\left[\begin{array}{ll}0 & 2 \\ 1 & 1 \\ 0 & 3\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 1 & 3\end{array}\right]\right]^{\mathrm{T}}=\left[\begin{array}{lll}4 & 2 & 6 \\ 2 & 2 & 3 \\ 6 & 3 & 9\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}4 & 2 & 6 \\ 2 & 2 & 3 \\ 6 & 3 & 9\end{array}\right]$

Alternatively,

$$
\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}}\left(\mathbf{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ll}
0 & 2 \\
1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
4 & 2 & 6 \\
2 & 2 & 3 \\
6 & 3 & 9
\end{array}\right]
$$

2. [2360/063023 (16 pts)] The following parts (a) and (b) are not related.
(a) (12 pts) Decide if the following subsets, \mathbb{W}, of the given vector space, \mathbb{V}, are subspaces. Assume the standard operations of vector addition and scalar multiplication apply. Justify the correct answer completely for full credit. A simple yes/no will result in zero points.
i. $\mathbb{V}=\mathcal{C}([0,1]) ; \mathbb{W}=\left\{f(t) \in \mathcal{C}([0,1]) \mid \int_{0}^{1} f(t) \mathrm{d} t=0\right\}$
ii. $\mathbb{V}=\mathbb{M}_{22} ; \mathbb{W}=\left\{\left.\left[\begin{array}{cc}1 & a \\ b & 1\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$
iii. $\mathbb{V}=\mathbb{R}^{3} ; \mathbb{W}=\left\{\left.\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$
(b) (4 pts) Determine whether or not the set $\mathbb{S}=\left\{4, t-t^{2}, t^{3}\right\}$ forms a basis for some vector space. If so, what is the vector space's dimension?

SOLUTION:

(a) i. \mathbb{W} is a subspace of \mathbb{V}. For f_{1} and f_{2} in \mathbb{W} and real numbers a, b

$$
\begin{aligned}
\int_{0}^{1}\left[a f_{1}(t)+b f_{2}(t)\right] \mathrm{d} t & =\int_{0}^{1} a f_{1}(t) \mathrm{d} t+\int_{0}^{1} b f_{2}(t) \mathrm{d} t=a \int_{0}^{1} f_{1}(t) \mathrm{d} t+b \int_{0}^{1} f_{2}(t) \mathrm{d} t \\
& =(a)(0)+(b)(0)=0 \Longrightarrow a f_{1}(t)+b f_{2}(t) \in \mathbb{W}
\end{aligned}
$$

ii. \mathbb{W} is not a subspace of \mathbb{V} because the zero vector, $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, is not included in \mathbb{W}. It is also not closed under vector addition or scalar multiplication.
iii. \mathbb{W} is a subspace of \mathbb{V}. For $\overrightarrow{\mathbf{v}}_{1}=\left[\begin{array}{c}a_{1} \\ 0 \\ b_{1}\end{array}\right]$ and $\overrightarrow{\mathbf{v}}_{2}=\left[\begin{array}{c}a_{2} \\ 0 \\ b_{2}\end{array}\right]$ and real numbers c_{1} and c_{2} we have

$$
c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}=c_{1}\left[\begin{array}{c}
a_{1} \\
0 \\
b_{1}
\end{array}\right]+c_{2}\left[\begin{array}{c}
a_{2} \\
0 \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1} a_{1}+c_{2} a_{2} \\
0 \\
c_{1} b_{1}+c_{2} b_{2}
\end{array}\right] \in \mathbb{W}
$$

(b) Since we have not specified a specific vector space that these may be basis for, we need only show that they are linearly independent. They then are a basis for their own span. The simplest way to do this is to apply the Wronskian test.

$$
\begin{aligned}
W\left[4, t-t^{2}, t^{3}\right](t) & =\left|\begin{array}{ccc}
4 & t-t^{2} & t^{3} \\
0 & 1-2 t & 3 t^{2} \\
0 & -2 & 6 t
\end{array}\right|=4\left|\begin{array}{cc}
1-2 t & 3 t^{2} \\
-2 & 6 t
\end{array}\right| \\
& =4\left[(1-2 t) 6 t+6 t^{2}\right] \\
& =4\left(6 t-6 t^{2}\right)=24 t(1-t) \neq 0 \text { for all } t \neq 0,1
\end{aligned}
$$

Therefore, the vectors are linearly independent and are a basis for their own span, which is a vector space of dimension 3 .
3. [2360/063023 (19 pts)] Consider the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(a) (6 pts) Show that $\lambda=0$ and $\lambda=2$ are eigenvalues of the matrix.
(b) (4 pts) State the algebraic multiplicity for the eigenvalues in part (a).
(c) (6 pts) Find the eigenspace associated with $\lambda=0$ and state its dimension.
(d) (3 pts) Is it possible that the system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$, where $\overrightarrow{\mathbf{b}} \neq \overrightarrow{\mathbf{0}}$, could be inconsistent? Explain briefly.

Solution:

(a)

$$
\begin{aligned}
\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & 1-\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right| & =-\lambda\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=-\lambda\left[(1-\lambda)^{2}-1\right] \\
& =-\lambda\left(\lambda^{2}-2 \lambda\right) \\
& =-\lambda^{2}(\lambda-2)=0
\end{aligned}
$$

Therefore, $\lambda=0$ and $\lambda=2$ are eigenvalues of \mathbf{A}.
(b) The eigenvalue $\lambda=0$ has algebraic multiplicity 2 and the eigenvalue $\lambda=2$ has algebraic multiplicity 1 .
(c)

$$
\begin{gathered}
(\mathbf{A}-0 \mathbf{I}) \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}} \\
{\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\overrightarrow{\mathbf{v}}=\left[\begin{array}{r}
-r \\
r \\
s
\end{array}\right] \\
=r\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad r, s \in \mathbb{R}
\end{gathered}
$$

Therefore, the eigenspace for eigenvalue $\lambda=0$ is

$$
\mathbb{E}_{\lambda=0}=\operatorname{span}\left\{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

having dimension 2.
(d) Yes, since $\lambda=0$ is an eigenvalue, $|\mathbf{A}|=0$, meaning that \mathbf{A} is singular. Therefore, the linear system will either have infinitely many solutions, or no solution at all (be inconsistent).
4. [2360/063023 (21 pts)] The following problems are not related.
(a) (6 pts) Find the RREF of the matrix $\mathbf{A}=\left[\begin{array}{lll}3 & 0 & 6 \\ 1 & 3 & 2 \\ 2 & 6 & 4\end{array}\right]$.
(b) (15 pts) The following is the augmented matrix from a system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$.

$$
\left[\begin{array}{lllll|l}
0 & 1 & 0 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

i. (3 pts) Is the matrix in RREF? If so, write YES. If not, put the matrix in RREF.
ii. (6 pts) Find a particular solution to the nonhomogeneous system.
iii. (6 pts) Find a basis for the solution space of the associated homogeneous problem. What is the dimension of this solution space?

SOLUTION:

(a)

$$
\left[\begin{array}{lll}
3 & 0 & 6 \\
1 & 3 & 2 \\
2 & 6 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 3 & 2 \\
2 & 6 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 0 \\
0 & 6 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(b) No. The RREF is $\left[\begin{array}{lllll|l}0 & 1 & 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(c) The pivot columns correspond to x_{2}, x_{3} and x_{5} (leading variables) with nonpivot columns corresponding to x_{1} and x_{4} (free variables), which we set to r and s, respectively. This gives

$$
\begin{aligned}
x_{1} & =r \quad \text { free variable } \\
x_{2}+2 x_{4} & =3 \\
x_{3}+x_{4} & =2 \\
x_{4} & =s \quad \text { free variable } \\
x_{5} & =1
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
r \\
3-2 s \\
2-s \\
s \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
2 \\
0 \\
1
\end{array}\right]+r\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
0 \\
-2 \\
-1 \\
1 \\
0
\end{array}\right], \quad r, s \in \mathbb{R}
$$

i. A particular solution to the nonhomogeneous system is, setting $r=s=0, \overrightarrow{\mathbf{x}}_{p}=\left[\begin{array}{l}0 \\ 3 \\ 2 \\ 0 \\ 1\end{array}\right]$.
ii. A basis for the solution space of the corresponding homogeneous system is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

The dimension of the solution space is 2 .
5. $[2360 / 063023(20 \mathrm{pts})]$ Let $\overrightarrow{\mathbf{v}}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\overrightarrow{\mathbf{b}}=\left[\begin{array}{r}-3 \\ 6\end{array}\right]$.
(a) (5 pts) Compute $\overrightarrow{\mathbf{v}}^{\mathrm{T}} \overrightarrow{\mathbf{v}}$ and $\operatorname{Tr}\left(\overrightarrow{\mathbf{v}}^{\mathrm{T}} \overrightarrow{\mathbf{v}}\right)$.
(b) (5 pts) Can Cramer's Rule be used to solve the linear system $\left(\overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{v}}^{\mathrm{T}}\right) \overrightarrow{\mathbf{x}}=\overrightarrow{\mathrm{b}}$? Justify your answer.
(c) (10 pts) Compute $\mathbf{H}=\mathbf{I}-2 \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{v}}^{\mathbf{T}}$ and use its inverse to solve $\mathbf{H} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$. Perform Gauss-Jordan elimination to find the inverse.

SOLUTION:

(a)

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}^{\mathrm{T}} \overrightarrow{\mathbf{v}}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=[2] \\
\operatorname{Tr}\left(\overrightarrow{\mathbf{v}}^{\mathrm{T}} \overrightarrow{\mathbf{v}}\right)=\operatorname{Tr}[2]=2
\end{gathered}
$$

(b) No, $\overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{v}}^{\mathrm{T}}$ is singular.

$$
\overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{v}}^{\mathrm{T}}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\left[\begin{array}{ll}
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \Longrightarrow\left|\overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{v}}^{\mathrm{T}}\right|=\left|\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right|=0
$$

(c)

$$
\begin{gathered}
\mathbf{H}=\mathbf{I}-2 \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{v}}^{\mathbf{T}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-2\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 2 \\
2 & -1
\end{array}\right] \\
{\left[\begin{array}{rr|rr}
-1 & 2 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rr|rr}
-1 & 2 & 1 & 0 \\
0 & 3 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{rr|rr}
-1 & 2 & 1 & 0 \\
0 & 1 & \frac{2}{3} & \frac{1}{3}
\end{array}\right] \sim\left[\begin{array}{rr|rr}
-1 & 0 & -\frac{1}{3} & -\frac{2}{3} \\
0 & 1 & \frac{2}{3} & \frac{1}{3}
\end{array}\right] \sim\left[\begin{array}{ll|ll}
1 & 0 & \frac{1}{3} & \frac{2}{3} \\
0 & 1 & \frac{2}{3} & \frac{1}{3}
\end{array}\right]} \\
\mathbf{H}^{-1}=\frac{1}{3}\left[\begin{array}{rr}
1 & 2 \\
2 & 1
\end{array}\right] \\
\overrightarrow{\mathbf{x}}=\mathbf{H}^{-1} \overrightarrow{\mathbf{b}}=\frac{1}{3}\left[\begin{array}{lr}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{r}
-3 \\
6
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
\end{gathered}
$$

