- This exam is worth 100 points and has 5 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one $8.5 " \times 11$ " crib sheet with writing on one side.
- Remote students are allowed use of a computer during the exam only for a live video of their hands and face and to view the exam in the Zoom meeting.

0 . At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." Failure to include this statement and your signature may result in a penalty.

1. [2360/063023 (24 pts)] The following parts (a) and (b) are not related.
(a) (12 pts) Suppose that \mathbf{A}, \mathbf{B}, and \mathbf{C} are $n \times n$ matrices with $|\mathbf{A}|=0,|\mathbf{B}|=3,|\mathbf{C}|=1$ and that \mathbf{D} is an $m \times n$ matrix. Calculate the following or explain why they fail to exist.
i. $|\mathrm{CB}|$
ii. $\left|\mathbf{C}^{\mathrm{T}}\right|$
iii. $\left|\mathbf{C}^{2}\left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\right|$
iv. $|\mathbf{D A}|$
(b) (12 pts) Let $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 1 & 3\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$. Calculate the following or explain why they fail to exist.
i. AB
ii. $\mathbf{A B}^{\mathrm{T}}$
iii. $\mathbf{A}+\mathbf{B}$
iv. $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{T}}$
2. [2360/063023 (16 pts)] The following parts (a) and (b) are not related.
(a) (12 pts) Decide if the following subsets, \mathbb{W}, of the given vector space, \mathbb{V}, are subspaces. Assume the standard operations of vector addition and scalar multiplication apply. Justify the correct answer completely for full credit. A simple yes/no will result in zero points.
i. $\mathbb{V}=\mathcal{C}([0,1]) ; \mathbb{W}=\left\{f(t) \in \mathcal{C}([0,1]) \mid \int_{0}^{1} f(t) \mathrm{d} t=0\right\}$
ii. $\mathbb{V}=\mathbb{M}_{22} ; \mathbb{W}=\left\{\left.\left[\begin{array}{cc}1 & a \\ b & 1\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$
iii. $\mathbb{V}=\mathbb{R}^{3} ; \mathbb{W}=\left\{\left.\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$
(b) (4 pts) Determine whether or not the set $\mathbb{S}=\left\{4, t-t^{2}, t^{3}\right\}$ forms a basis for some vector space. If so, what is the vector space's dimension?
3. [2360/063023 (19 pts)] Consider the matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(a) (6 pts) Show that $\lambda=0$ and $\lambda=2$ are eigenvalues of the matrix.
(b) (4 pts) State the algebraic multiplicity for the eigenvalues in part (a).
(c) (6 pts) Find the eigenspace associated with $\lambda=0$ and state its dimension.
(d) (3 pts) Is it possible that the system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$, where $\overrightarrow{\mathbf{b}} \neq \overrightarrow{\mathbf{0}}$, could be inconsistent? Explain briefly.
4. [2360/063023 (21 pts)] The following problems are not related.
(a) (6 pts) Find the RREF of the matrix $\mathbf{A}=\left[\begin{array}{lll}3 & 0 & 6 \\ 1 & 3 & 2 \\ 2 & 6 & 4\end{array}\right]$.
(b) (15 pts) The following is the augmented matrix from a system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$.
$\left[\begin{array}{lllll|l}0 & 1 & 0 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$
i. (3 pts) Is the matrix in RREF? If so, write YES. If not, put the matrix in RREF.
ii. (6 pts) Find a particular solution to the nonhomogeneous system.
iii. (6 pts) Find a basis for the solution space of the associated homogeneous problem. What is the dimension of this solution space?
5. [2360/063023 (20 pts)] Let $\overrightarrow{\mathbf{v}}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\overrightarrow{\mathbf{b}}=\left[\begin{array}{r}-3 \\ 6\end{array}\right]$.
(a) (5 pts) Compute $\overrightarrow{\mathbf{v}}^{\mathrm{T}} \overrightarrow{\mathbf{v}}$ and $\operatorname{Tr}\left(\overrightarrow{\mathbf{v}}^{\mathrm{T}} \overrightarrow{\mathbf{v}}\right)$.
(b) (5 pts) Can Cramer's Rule be used to solve the linear system $\left(\overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{v}}^{\mathrm{T}}\right) \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$? Justify your answer.
(c) (10 pts) Compute $\mathbf{H}=\mathbf{I}-2 \overrightarrow{\mathbf{v}} \overrightarrow{\mathbf{v}}^{\mathbf{T}}$ and use its inverse to solve $\mathbf{H} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$. Perform Gauss-Jordan elimination to find the inverse.
