1. [2360/061623 (18 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) The operator $\mathrm{L}(y)=[\ln (\sin t)] y^{\prime}+3 y$ is a linear operator.
(b) Let $y^{\prime}=f(y)$, where f is continuous. An $f(y)$ exists such that there are only two equilibrium solutions, both of which are semistable.
(c) The equation $\left(y^{\prime}\right)^{2}+(\sin t) y+1=0$ is linear, second order, homogeneous, autonomous differential equation.
(d) The differential equation $(\cos t) y^{\prime}+(\sin t) y=t$ can be solved using integrating factor method.
(e) Picard's theorem guarantees the existence of a unique solution to the initial problem: $y^{\prime}=(\ln t) y^{1 / 2}, y(1)=0$.
(f) The differential equation describing Newton's Law of Cooling possesses a single, stable equilibrium solution.

SOLUTION:

(a) TRUE $\mathrm{L}(k \overrightarrow{\mathbf{y}})=k \mathrm{~L} \overrightarrow{(\mathbf{y}})$ and $\mathrm{L}(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}})=\mathrm{L}(\overrightarrow{\mathbf{x}})+\mathrm{Ly})$ where $k \in \mathbb{R}$.
(b) TRUE One example is $f(y)=\left(y^{2}-1\right)^{2}$
(c) FALSE The given equation is nonlinear due to the $\left(y^{\prime}\right)^{2}$ term.
(d) TRUE This is a linear, first order ODE and therefore can be solved using integrating factor method.
(e) FALSE The derivative $f_{y}(t, y)=\frac{\ln (t)}{2 y^{1 / 2}}$ is undefined at the initial condition. Therefore Picard's theorem tells us nothing about the uniqueness of the solution to the ODE.
(f) TRUE $T^{\prime}(t)=k(M-T), k>0$ has the single equilibrium solution $T=M$. For $T_{0}<M, T^{\prime}(t)>0$ and for $T_{0}>$ $M, T^{\prime}(t)<0$ implying that the equilibrium solution is stable.
2. [2360/061623 (20 pts)] The following questions are unrelated.
(a) (14 pts) Solve the following initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{e^{-y}}{2 t-1}, y(0)=0
$$

(b) (6 pts) Consider the following initial value problem

$$
y^{\prime}=(\ln t) y, y(e)=1
$$

Apply two steps of Euler's method using a step size $h=e$.

SOLUTION:

(a) Note that this differential equation is separable and has no equilibrium solutions. Then

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{e^{-y}}{2 t-1} \\
\int e^{y} \mathrm{~d} y & =\int \frac{1}{2 t-1} \mathrm{~d} t \\
e^{y} & =\frac{1}{2} \int \frac{1}{u} \mathrm{~d} u \quad(\text { where } u=2 t-1) \\
e^{y} & =\frac{1}{2} \ln |2 t-1|+C \\
y & =\ln \left(\frac{1}{2} \ln |2 t-1|+C\right)
\end{aligned}
$$

Applying the initial condition gives

$$
\begin{aligned}
0 & =\ln \left(\frac{1}{2} \ln |2(0)-1|+C\right) \\
0 & =\ln (C) \\
C & =1
\end{aligned}
$$

and finally, $y(t)=\ln \left(\frac{1}{2} \ln |2 t-1|+1\right)$.
(b) The iteration for Euler's method is: $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)=y_{n}+e \ln \left(t_{n}\right) y_{n}$. Therefore, we have

$$
\begin{aligned}
& y_{0}=1 \\
& y_{1}=1+e \ln (e)(1)=1+e \\
& y_{2}=(1+e)+e \ln (2 e)(1+e)=(1+e)[1+e \ln (2 e)]=(1+e)[1+e(\ln 2+1)]=(1+e)(1+e+e \ln 2)
\end{aligned}
$$

3. [2360/061623 (20 pts)] Consider the following system of differential equations:

$$
\begin{aligned}
& x^{\prime}=x^{2}+y^{2}-4 \\
& y^{\prime}=y-x y
\end{aligned}
$$

(a) (5 pts) Find the h nullclines
(b) (5 pts) Find the v nullclines
(c) (6 pts) On a single phase plane, plot the h nullclines as solid curves/lines and the v nullclines as dashed curves/lines.
(d) (4 pts) Find all equilibrium points, provided any exist.

SOLUTION:

(a) The h nullclines occur when $y^{\prime}=0$. Therefore, these come from $0=y-x y=y(1-x)$ which gives $y=0$ and $x=1$.
(b) The v nullclines occur when $x^{\prime}=0$. Therefore, these come from $0=x^{2}+y^{2}-4$ which gives the circle $x^{2}+y^{2}=4$.
(c) Sketch of nullclines.

(d) Equilibrium solutions occur where the h and v nullclines intersect. Since the lines $y=0$ and $x=1$ both cross through the circle $x^{2}+y^{2}=4$ there are multiple equilibria. First, when $y=0$ we have

$$
\begin{aligned}
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

Therefore, $(2,0)$ and $(-2,0)$ are equilibrium points. The other two occur when $x=1$ intersects the circle. This gives

$$
\begin{aligned}
1+y^{2} & =4 \\
y^{2} & =3 \\
y & = \pm \sqrt{3}
\end{aligned}
$$

Therefore, $(1, \sqrt{3})$ and $(1,-\sqrt{3})$ are also equilibrium points.
4. [2360/061623 (18 pts)] A tank with a total capacity of 4600 liters (L) initially contains 600 L of fresh water. Water containing $\frac{\ln (t+1)}{(t+1)^{2}}$ kilograms (kg) of sugar per liter flows into the tank at a rate of $6 \mathrm{~L} / \mathrm{min}$, and the well mixed sugar solution is allowed to drain from the bottom of the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. Let $x(t)$ denote the amount (kg) of sugar in the tank at time t.
(a) (14 pts) Write down, but do not solve, the initial value problem that $x(t)$ satisfies.
(b) (4 pts) Without solving the initial value problem from part (a), state the interval over which the solution will be valid based on the physical situation.

SOLUTION:

(a) First, determine the rate of change of volume of liquid in the tank.

$$
\begin{aligned}
\frac{\mathrm{d} V}{\mathrm{~d} t} & =\text { flow in }- \text { flow out } \\
& =6 \frac{\mathrm{~L}}{\min }-2 \frac{\mathrm{~L}}{\min } \\
& =4 \frac{\mathrm{~L}}{\min }
\end{aligned}
$$

Since initially there are 600 L in the tank, the amount of volume of liquid in the tank at time t is

$$
V(t)=4 t+600 \text { liters }
$$

Next, the rate of change of the amount of sugar in the tank is

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\text { mass flow in }- \text { mass flow out } \\
\frac{\mathrm{d} x}{\mathrm{~d} t}=\left(\frac{\ln (t+1)}{(t+1)^{2}} \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(6 \frac{\mathrm{~L}}{\min }\right)-\left(\frac{x}{4 t+600} \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(2 \frac{\mathrm{~L}}{\min }\right) \\
\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{x}{2 t+300}=\frac{6 \ln (t+1)}{(t+1)^{2}}
\end{gathered}
$$

Together with the initial condition that the tank contains no sugar, yields the initial value problem

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{x}{2 t+300}=\frac{6 \ln (t+1)}{(t+1)^{2}}, \quad x(0)=0
$$

(b) Since the net flow is into the tank, the initial value problem is valid until the volume in the tank is 4600 L (completely full).

$$
\begin{aligned}
4600 & =4 t+600 \\
t & =1000
\end{aligned}
$$

Therefore, the interval on which the initial value problem in part (a) is valid is $0 \leq t \leq 1000 \mathrm{~min}$.
5. [2360/061623 (24 pts)] Consider the differential equation $t y^{\prime}=y+\frac{1}{t}$.
(a) (4 pts) Show that $y_{h}=C t$ is the general solution of the associated homogeneous equation, noting that C is an arbitrary constant.
(b) (15 pts) Use variation of parameters (Euler-Lagrange two-stage method) to find a particular solution to the original nonhomogeneous equation. Show all your work.
(c) (5 pts) Find the solution to the differential equation passing through the point $\left(2, \frac{3}{4}\right)$.

SOLUTION:

(a) This can be done by substituting this into the corresponding homogeneous equation.

$$
\begin{aligned}
t y_{h}^{\prime} & =y_{h} \\
t(C t)^{\prime} & =C t \\
C t & =C t
\end{aligned}
$$

Therefore, $y_{h}=C t$ is a solution to the corresponding homogeneous equation.
(b) Step one is already complete, $y_{h}=C t$ is a solution to the corresponding homogeneous equation. Replacing C with $v(t)$ and substituting this into the standard form of the equation $y^{\prime}=\frac{y}{t}+\frac{1}{t^{2}}$ gives

$$
\begin{aligned}
{[v(t) t]^{\prime} } & =v(t)+\frac{1}{t^{2}} \\
{\left[v^{\prime}(t) t+v(t)\right] } & =v(t)+\frac{1}{t^{2}} \\
v^{\prime}(t) & =\frac{1}{t^{3}} \\
v(t) & =\int \frac{1}{t^{3}} \mathrm{~d} t \\
& =-\frac{1}{2 t^{2}}
\end{aligned}
$$

Therefore, a particular solution to the original nonhomogeneous ODE is $y_{p}=-\frac{1}{2 t^{2}} t=-\frac{1}{2 t}$.
(c) By the Nonhomogeneous Principle, the general solution to the original nonhomogeneous ODE is

$$
y(t)=y_{h}(t)+y_{p}(t)=C t-\frac{1}{2 t}
$$

Using the given point (applying the initial condition) yields $\frac{3}{4}=2 C-\frac{1}{4} \Longrightarrow C=\frac{1}{2}$ so the solution is

$$
y(t)=\frac{1}{2}\left(t-\frac{1}{t}\right)
$$

