- This exam is worth 100 points and has 5 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one $8.5 " \times 11 "$ crib sheet with writing on one side.
- Remote students are allowed use of a computer during the exam only for a live video of their hands and face and to view the exam in the Zoom meeting.

0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INClUde this statement and your signature may result in a penalty.
1. [2360/061623 (18 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) The operator $\mathrm{L}(y)=[\ln (\sin t)] y^{\prime}+3 y$ is a linear operator.
(b) Let $y^{\prime}=f(y)$, where f is continuous. An $f(y)$ exists such that there are only two equilibrium solutions, both of which are semistable.
(c) The equation $\left(y^{\prime}\right)^{2}+(\sin t) y+1=0$ is linear, second order, homogeneous, autonomous differential equation.
(d) The differential equation $(\cos t) y^{\prime}+(\sin t) y=t$ can be solved using integrating factor method.
(e) Picard's theorem guarantees the existence of a unique solution to the initial problem: $y^{\prime}=(\ln t) y^{1 / 2}, y(1)=0$.
(f) The differential equation describing Newton's Law of Cooling possesses a single, stable equilibrium solution.
2. [2360/061623 (20 pts)] The following questions are unrelated.
(a) (14 pts) Solve the following initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{e^{-y}}{2 t-1}, y(0)=0
$$

(b) (6 pts) Consider the following initial value problem

$$
y^{\prime}=(\ln t) y, y(e)=1
$$

Apply two steps of Euler's method using a step size $h=e$.
3. [2360/061623 (20 pts)] Consider the following system of differential equations:

$$
\begin{aligned}
x^{\prime} & =x^{2}+y^{2}-4 \\
y^{\prime} & =y-x y
\end{aligned}
$$

(a) (5 pts) Find the h nullclines
(b) (5 pts) Find the v nullclines
(c) (6 pts) On a single phase plane, plot the h nullclines as solid curves/lines and the v nullclines as dashed curves/lines.
(d) $(4 \mathrm{pts})$ Find all equilibrium points, provided any exist.
4. [2360/061623 (18 pts)] A tank with a total capacity of 4600 liters (L) initially contains 600 L of fresh water. Water containing $\frac{\ln (t+1)}{(t+1)^{2}}$ kilograms (kg) of sugar per liter flows into the tank at a rate of $6 \mathrm{~L} / \mathrm{min}$, and the well mixed sugar solution is allowed to drain from the bottom of the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. Let $x(t)$ denote the amount (kg) of sugar in the tank at time t.
(a) (14 pts) Write down, but do not solve, the initial value problem that $x(t)$ satisfies.
(b) (4 pts) Without solving the initial value problem from part (a), state the interval over which the solution will be valid based on the physical situation.
5. [2360/061623 (24 pts)] Consider the differential equation $t y^{\prime}=y+\frac{1}{t}$.
(a) (4 pts) Show that $y_{h}=C t$ is the general solution of the associated homogeneous equation, noting that C is an arbitrary constant.
(b) (15 pts) Use variation of parameters (Euler-Lagrange two-stage method) to find a particular solution to the original nonhomogeneous equation. Show all your work.
(c) $(5 \mathrm{pts})$ Find the solution to the differential equation passing through the point $\left(2, \frac{3}{4}\right)$.

