1. $[2360 / 072222(30 \mathrm{pts})]$ Solve the initial value problem $\ddot{x}+2 \dot{x}+10 x=\delta(t-3), x(0)=0, \dot{x}(0)=0$.

SOLUTION:

$$
\begin{gathered}
s^{2} X(s)-s x(0)-x^{\prime}(0)+2[s X(s)-x(0)]+10 X(s)=e^{-3 s} \\
\left(s^{2}+2 s+10\right) X(s)=e^{-3 s} \quad(\text { complete the square }) \\
X(s)=\frac{e^{-3 s}}{(s+1)^{2}+9}=\frac{1}{3}\left(\frac{3}{(s+1)^{2}+3^{2}}\right) e^{-3 s} \\
x(t)=\mathscr{L}^{-1}\left\{\frac{1}{3}\left(\frac{3}{(s+1)^{2}+3^{2}}\right) e^{-3 s}\right\}=\frac{1}{3} e^{-(t-3)} \sin [3(t-3)] \operatorname{step}(t-3)
\end{gathered}
$$

2. [2360/072222 (20 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown, no work will be graded and no partial credit will be given. Please arrange your answers in a 10×2 matrix with the letters (a)-(j) in column 1 and your answers to each part in the second column.
(a) The parabola $y=x^{2}$ is a subspace of \mathbb{R}^{2}.
(b) If \mathbf{B} is an $m \times n$ matrix, then $\left|\mathbf{B B}^{\mathrm{T}}\right|$ is defined.
(c) The matrix $\mathbf{A}=\left[\begin{array}{rrrr|r}1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is in RREF and therefore the system from which this augmented matrix was derived has a unique solution.
(d) The integrating factor for the equation $\left(t^{2}+1\right) y^{\prime}+2 t y=\cos t$ is $e^{t^{2}}$.
(e) The isoclines of $y^{\prime}+y^{2}=t$ are parabolas opening downward.
(f) The following system has no equilibrium points:

$$
\begin{aligned}
x^{\prime} & =x^{2}+y^{2}+1 \\
y^{\prime} & =y^{4}+\sqrt{x+1}
\end{aligned}
$$

(g) The equation $y^{\prime}=y^{2}-y$ has a stable equilibrium solution at $y=1$.
(h) There is only one value of b for which the harmonic oscillator governed by the differential equation $4 \ddot{x}+b^{2} \dot{x}+36 x=\cos 3 t$ will have unbounded solutions.
(i) Consider the initial value problem $y^{\prime}=f(t, y), y(1)=1$ with $f(1,1)=2$ and $f_{y}(1,1)$ not defined. Picard's theorem guarantees that the IVP does not have a unique solution.
(j) Newton's Law of Cooling for a certain situation is given by $\frac{\mathrm{d} T}{\mathrm{~d} t}=2(50-T)$. With the change of variable $y=50-T$, this is equivalent to an exponential decay problem.

Solution:

(a) FALSE The only subspaces of \mathbb{R}^{2} are lines through the origin. More demonstrably, $(1,1)$ and $(2,4)$ are on the parabola but $(1,1)+(2,4)=(3,5)$ is not, showing that the set (the parabola) is not closed under vector addition.
(b) TRUE \mathbf{B} is $m \times n$ implying that \mathbf{B}^{T} is $n \times m$ further implying that $\mathbf{B} \mathbf{B}^{\mathrm{T}}$ is square $(m \times m)$ and thus $\left|\mathbf{B B} \mathbf{B}^{\mathrm{T}}\right|$ is defined.
(c) FALSE The matrix is in RREF but there is a nonpivot column so a solution exists but is not unique.
(d) FALSE The integrating factor is $t^{2}+1$.
(e) FALSE The isoclines are $t-y^{2}=k$, parabolas that open to the right (axis of symmetry along the x-axis).
(f) TRUE The system has no nullclines and thus no equilibrium points.
(g) FALSE The equilibrium solution at $y=1$ is unstable.
(h) TRUE The oscillator must be undamped, so $b=0$ only.
(i) FALSE Since $f_{y}(1,1)$ is undefined, it cannot be continuous in a rectangle containing $(1,1)$. Thus no conclusions can be drawn from Picard's theorem.
(j) TRUE. The change of variable $y=50-T$ yields $y^{\prime}=-2 y$.
3. (35 pts) The following parts are not related.
(a) (10 pts) Consider the initial value problem (IVP) $t y^{\prime}-3(\ln t)^{2} e^{-y}=0, \quad y(1)=\ln 8$.
i. (8 pts) Find the implicit solution to the IVP.
ii. (2 pts) Find the explicit solution to the IVP and state the interval over which the solution is valid.
(b) (25 pts) A particular solution to $L(\overrightarrow{\mathbf{y}})=f$, where L is a linear operator, is $y_{p}=\cos t$. Suppose the characteristic equation for the associated homogeneous equation is $(r-2)\left(r^{2}-1\right)=0$. Use Cramer's Rule to find the solution to the following initial value problem. No points for using other methods.

$$
L(\overrightarrow{\mathbf{y}})=f, \quad y(0)=4, y^{\prime}(0)=0, y^{\prime \prime}(0)=-1
$$

SOLUTION:

(a) i. The equation is separable.

$$
\begin{gathered}
\int e^{y} \mathrm{~d} y=\int 3 \frac{(\ln t)^{2}}{t} \mathrm{~d} t \quad(u=\ln t) \\
e^{y}=3 \int u^{2} \mathrm{~d} u=(\ln t)^{3}+C \\
e^{\ln 8}=(\ln 1)^{3}+C \Longrightarrow C=8 \\
e^{y}=(\ln t)^{3}+8
\end{gathered}
$$

ii. The explicit solution is $y=\ln \left[(\ln t)^{3}+8\right]$. Clearly, $t>0$ for input into the "inner" $\ln t$. For input into the "outer" natural logarithm function, we also need

$$
(\ln t)^{3}+8>0 \Longrightarrow \ln t>\sqrt[3]{-8}=-2 \Longrightarrow t>e^{-2}
$$

The solution is valid on $\left(e^{-2}, \infty\right)$.
(b) Based on the characteristic equation, $(r-2)(r+1)(r-1)=0$, the solution to the homogeneous equation is $y_{h}=c_{1} e^{2 t}+$ $c_{2} e^{-t}+c_{3} e^{t}$ so the general solution to which we apply the initial conditions is $y=y_{h}+y_{p}$.

$$
\begin{aligned}
y(t) & =c_{1} e^{2 t}+c_{2} e^{-t}+c_{3} e^{t}+\cos t \\
y^{\prime}(t) & =2 c_{1} e^{2 t}-c_{2} e^{-t}+c_{3} e^{t}-\sin t \\
y^{\prime \prime}(t) & =4 c_{1} e^{2 t}+c_{2} e^{-t}+c_{3} e^{t}-\cos t
\end{aligned}
$$

At $t=0$ we have

$$
\begin{aligned}
c_{1}+c_{2}+c_{3}+1 & =4 \\
2 c_{1}-c_{2}+c_{3} & =0 \\
4 c_{1}+c_{2}+c_{3}-1 & =-1
\end{aligned} \quad \Longrightarrow\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & 1 \\
4 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]
$$

Now use Cramer's Rule

$$
\begin{gathered}
\left|\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & 1 \\
4 & 1 & 1
\end{array}\right|=1(-1)^{1+1}\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|+1(-1)^{1+2}\left|\begin{array}{ll}
2 & 1 \\
4 & 1
\end{array}\right|+1(-1)^{1+3}\left|\begin{array}{rr}
2 & -1 \\
4 & 1
\end{array}\right|=-2+(-1)(-2)+6=6 \\
c_{1}=\frac{\left|\begin{array}{rrr}
3 & 1 & 1 \\
0 & -1 & 1 \\
0 & 1 & 1
\end{array}\right|}{6}=\frac{3(-1)^{1+1}\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|}{6}=\frac{3(-2)}{6}=-1 \\
c_{2}=\frac{\left|\begin{array}{rrr}
1 & 3 & 1 \\
2 & 0 & 1 \\
4 & 0 & 1
\end{array}\right|}{r r}=\frac{3(-1)^{1+2}\left|\begin{array}{ll}
2 & 1 \\
4 & 1
\end{array}\right|}{6}=\frac{-3(-2)}{6}=1 \\
c_{3}=\frac{\left|\begin{array}{rrr}
1 & 1 & 3 \\
2 & -1 & 0 \\
4 & 1 & 0
\end{array}\right|}{r}=\frac{3(-1)^{1+3}\left|\begin{array}{rr}
2 & -1 \\
4 & 1
\end{array}\right|}{6}=\frac{3(6)}{6}=3
\end{gathered}
$$

The solution to the initial value problem is thus

$$
y(t)=-e^{2 t}+e^{-t}+3 e^{t}+\cos t
$$

4. [2360/072222 (29 pts)] The following parts are not related.
(a) (12 pts) Consider the function $f(t)=\left\{\begin{array}{lr}0 & t<0 \\ t^{2} & 0 \leq t<2 \\ 5-t & 2 \leq t\end{array}\right.$
i. (3 pts) Graph the function.
ii. (4 pts) Write the $f(t)$ as a single function using step functions.
iii. (5 pts) Find the Laplace transform of $f(t)$.
(b) (17 pts) Three 200 liter (L) tanks, $1,2,3$, contain solution that is always well-mixed. Initially, tanks 1 and 3 are half full of pure water and tank 2 is filled with water containing 10 grams (g) of dissolved sugar. Water with 2 g per liter $(\mathrm{g} / \mathrm{L})$ of dissolved sugar enters tank 1 at a rate of 1 liter per hour (L / h) and flows through the system as shown in the figure below.
i. (15 pts) Set up, but do NOT solve, a system of differential equations that models the aforementioned scenario. Write your final answer using matrices and vectors.
ii. (2 pts) Over what interval of t will the solution be valid? Hint: You do not need to solve the system to answer this.

SOLUTION:

(a) i. Sketch.

ii.

$$
\begin{aligned}
f(t) & =t^{2} \operatorname{step}(t)-t^{2} \operatorname{step}(t-2)+(5-t) \operatorname{step}(t-2) \\
& =t^{2}[\operatorname{step}(t)-\operatorname{step}(t-2)]+(5-t) \operatorname{step}(t-2) \\
& =t^{2} \operatorname{step}(t)+\left(5-t-t^{2}\right) \operatorname{step}(t-2)
\end{aligned}
$$

iii. Proceeding term-by-term:

$$
\begin{gathered}
\mathscr{L}\left\{t^{2} \operatorname{step}(t)\right\}=e^{-0 s} \mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}} \\
\mathscr{L}\left\{t^{2} \operatorname{step}(t-2)\right\}=e^{-2 s} \mathscr{L}\left\{(t+2)^{2}\right\}=e^{-2 s} \mathscr{L}\left\{t^{2}+4 t+4\right\}=e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}\right) \\
\mathscr{L}\{(5-t) \operatorname{step}(t-2)\} \\
=\mathscr{L}\{[3-(t-2)] \operatorname{step}(t-2)\} \\
\\
=\mathscr{L}\{3 \operatorname{step}(t-2)\}-\mathscr{L}\{(t-2) \operatorname{step}(t-2)\} \\
\\
=\frac{3 e^{-2 s}}{s}-\frac{e^{-2 s}}{s^{2}}=e^{-2 s}\left(\frac{3}{s}-\frac{1}{s^{2}}\right)
\end{gathered}
$$

Thus

$$
\begin{aligned}
\mathscr{L}\left\{t^{2} \operatorname{step}(t)-t^{2} \operatorname{step}(t-2)+(5-t) \operatorname{step}(t-2)\right\} & =\frac{2}{s^{3}}-e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}\right)+e^{-2 s}\left(\frac{3}{s}-\frac{1}{s^{2}}\right) \\
& =\frac{2}{s^{3}}-e^{-2 s}\left(\frac{2}{s^{3}}+\frac{5}{s^{2}}+\frac{1}{s}\right)
\end{aligned}
$$

(b) i. Let $x_{1}(t), x_{2}(t), x_{3}(t)$ represent the mass (grams) of sugar and $V_{1}(t), V_{2}(t), V_{3}(t)$ the volume of solution (L) in Tank 1, 2, 3 at time t, respectively. Then with

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\text { flow rate in }- \text { flow rate out }
$$

we have

$$
\left.\begin{array}{lll}
\frac{\mathrm{d} V_{1}}{\mathrm{~d} t}=1+4-6=-1 & V_{1}(0)=100 & \Longrightarrow \int \mathrm{~d} V_{1}=\int-1 \mathrm{~d} t
\end{array} \quad \Longrightarrow V_{1}(t)=100-t\right)
$$

For the amount of sugar in each tank, we will use

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}=(\text { flow rate in })(\text { concentration in })-(\text { flow rate out })(\text { concentration out }) \\
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=(1)(2)+4\left(\frac{x_{3}}{100+t}\right)-6\left(\frac{x_{1}}{100-t}\right) \\
\frac{\mathrm{d} x_{2}}{\mathrm{~d} t}=6\left(\frac{x_{1}}{100-t}\right)-6\left(\frac{x_{2}}{200}\right) \\
\frac{\mathrm{d} x_{3}}{\mathrm{~d} t}=6\left(\frac{x_{2}}{200}\right)-4\left(\frac{x_{3}}{100+t}\right)-1\left(\frac{x_{3}}{100+t}\right) \\
{\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-6}{100-t} & \frac{4}{100+t} \\
\frac{6}{100-t} & -\frac{3}{100} & 0 \\
0 & \frac{3}{100} & \frac{-5}{100+t}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{c}
0 \\
10 \\
0
\end{array}\right]}
\end{gathered}
$$

ii. Tank 1 empties and Tank 3 fills after 100 hours so the interval over which the solution to the system is valid is $[0,100]$.
5. [2360/072222 (36 pts)] The following parts are not related.
(a) (24 pts) Solve the initial value problem $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{ll}-1 & 1 \\ -9 & 5\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{r}2 \\ -1\end{array}\right]$. Write your final answer as a single vector.
(b) (12 pts) Consider the linear system $\overrightarrow{\mathbf{x}}^{\prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$ where $\mathbf{A}=\left[\begin{array}{rr}k & 1 \\ -2 & k\end{array}\right]$ and k is a real number.
i. (3 pts) For what values, if any, of k does the system have a unique equilibrium solution at $(0,0)$?
ii. (3 pts) For what values, if any, of k will the equilibrium solution be a saddle?
iii. (3 pts) For what values, if any, of k will the equilibrium solution be a degenerate or star node?
iv. (3 pts) For what values, if any, of k will the trajectories in the phase plane be closed loops?

SOLUTION:

(a)

$$
\left|\begin{array}{cc}
-1-\lambda & 1 \\
-9 & 5-\lambda
\end{array}\right|=(-1-\lambda)(5-\lambda)+9=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0 \Longrightarrow \lambda=2 \text { with multiplicity } 2
$$

We need to find nontrivial solutions to $(\mathbf{A}-2 \mathbf{I}) \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}$ giving

$$
\left[\begin{array}{ll|l}
-3 & 1 & 0 \\
-9 & 3 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{rr|r}
1 & -\frac{1}{3} & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow v_{1}=\frac{1}{3} v_{2} \Longrightarrow \overrightarrow{\mathbf{v}}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Since there is only one eigenvector, we need to find the generalized eigenvector by finding a nontrivial solution to $(\mathbf{A}-2 \mathbf{I}) \overrightarrow{\mathbf{u}}=$ $\overrightarrow{\mathrm{v}}$.

$$
\left[\begin{array}{ll|l}
-3 & 1 & 1 \\
-9 & 3 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{rr|r}
1 & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right] \Longrightarrow u_{1}=-\frac{1}{3}+\frac{1}{3} u_{2} \Longrightarrow \overrightarrow{\mathbf{u}}=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

The general solution is

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{2 t}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2} e^{2 t}\left(t\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right)
$$

Applying the initial condition yields

$$
c_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

with Cramer's Rule giving

$$
c_{1}=\frac{\left|\begin{array}{rr}
2 & 1 \\
-1 & 4
\end{array}\right|}{\left|\begin{array}{lr}
1 & 3 \\
1 & 4
\end{array}\right|}=\frac{9}{1}=9 \quad c_{2}=\frac{\left|\begin{array}{rr}
1 & 2 \\
3 & -1
\end{array}\right|}{\left|\begin{array}{rr}
1 & 3 \\
1 & 4
\end{array}\right|}=\frac{-7}{1}=-7
$$

and the final solution to the initial value problem as

$$
\overrightarrow{\mathbf{x}}=e^{2 t}\left[\begin{array}{c}
2-7 t \\
-1-21 t
\end{array}\right]
$$

(b) We have $\operatorname{Tr} \mathbf{A}=2 k,|\mathbf{A}|=k^{2}+2$ and $(\operatorname{Tr} \mathbf{A})^{2}-4|\mathbf{A}|=4 k^{2}-4\left(k^{2}+2\right)=-8$
i. All real numbers Since $|\mathbf{A}|=k^{2}+2 \neq 0$ for all k, the system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has only the trivial solution for all values of k. Thus, regardless of the value of k, the system will always have a unique equilibrium solution at $(0,0)$.
ii. None $|\mathbf{A}|=k^{2}+2>0$ for all k.
iii. None $(\operatorname{Tr} \mathbf{A})^{2}-4|\mathbf{A}|$ is never 0 .
iv. $0 \mathrm{Tr} \mathbf{A}$ must be zero and $|\mathbf{A}|$ must be positive.

