- This exam is worth 150 points and has 5 questions.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted. You are allowed one $8.5 " \times 11^{\prime \prime}$ crib sheet with writing on both sides.

At the top of the page containing your answer to problem 1, write the following italicized statement and sign your name to it:
"I will abide by the CU Boulder Honor Code on this exam." Failure to include this may result in a penalty.

1. $[2360 / 072222(30 \mathrm{pts})]$ Solve the initial value problem $\ddot{x}+2 \dot{x}+10 x=\delta(t-3), x(0)=0, \dot{x}(0)=0$.
2. [2360/072222 (20 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown, no work will be graded and no partial credit will be given. Please arrange your answers in a 10×2 matrix with the letters (a)-(j) in column 1 and your answers to each part in the second column.
(a) The parabola $y=x^{2}$ is a subspace of \mathbb{R}^{2}.
(b) If \mathbf{B} is an $m \times n$ matrix, then $\left|\mathbf{B B}^{\mathrm{T}}\right|$ is defined.
(c) The matrix $\mathbf{A}=\left[\begin{array}{rrrr|r}1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ is in RREF and therefore the system from which this augmented matrix was derived has a unique solution.
(d) The integrating factor for the equation $\left(t^{2}+1\right) y^{\prime}+2 t y=\cos t$ is $e^{t^{2}}$.
(e) The isoclines of $y^{\prime}+y^{2}=t$ are parabolas opening downward.
(f) The following system has no equilibrium points:

$$
\begin{aligned}
x^{\prime} & =x^{2}+y^{2}+1 \\
y^{\prime} & =y^{4}+\sqrt{x+1}
\end{aligned}
$$

(g) The equation $y^{\prime}=y^{2}-y$ has a stable equilibrium solution at $y=1$.
(h) There is only one value of b for which the harmonic oscillator governed by the differential equation $4 \ddot{x}+b^{2} \dot{x}+36 x=\cos 3 t$ will have unbounded solutions.
(i) Consider the initial value problem $y^{\prime}=f(t, y), y(1)=1$ with $f(1,1)=2$ and $f_{y}(1,1)$ not defined. Picard's theorem guarantees that the IVP does not have a unique solution.
(j) Newton's Law of Cooling for a certain situation is given by $\frac{\mathrm{d} T}{\mathrm{~d} t}=2(50-T)$. With the change of variable $y=50-T$, this is equivalent to an exponential decay problem.
3. (35 pts) The following parts are not related.
(a) $(10 \mathrm{pts})$ Consider the initial value problem (IVP) $t y^{\prime}-3(\ln t)^{2} e^{-y}=0, \quad y(1)=\ln 8$.
i. (8 pts) Find the implicit solution to the IVP.
ii. (2 pts) Find the explicit solution to the IVP and state the interval over which the solution is valid.
(b) (25 pts) A particular solution to $L(\overrightarrow{\mathbf{y}})=f$, where L is a linear operator, is $y_{p}=\cos t$. Suppose the characteristic equation for the associated homogeneous equation is $(r-2)\left(r^{2}-1\right)=0$. Use Cramer's Rule to find the solution to the following initial value problem. No points for using other methods.

$$
L(\overrightarrow{\mathbf{y}})=f, \quad y(0)=4, y^{\prime}(0)=0, y^{\prime \prime}(0)=-1
$$

4. [2360/072222 (29 pts)] The following parts are not related.
(a) (12 pts) Consider the function $f(t)=\left\{\begin{array}{lr}0 & t<0 \\ t^{2} & 0 \leq t<2 \\ 5-t & 2 \leq t\end{array}\right.$
i. (3 pts) Graph the function.
ii. (4 pts) Write the $f(t)$ as a single function using step functions.
iii. (5 pts) Find the Laplace transform of $f(t)$.
(b) (17 pts) Three 200 liter (L) tanks, 1, 2, 3, contain solution that is always well-mixed. Initially, tanks 1 and 3 are half full of pure water and tank 2 is filled with water containing 10 grams (g) of dissolved sugar. Water with 2 g per liter $(\mathrm{g} / \mathrm{L})$ of dissolved sugar enters tank 1 at a rate of 1 liter per hour (L / h) and flows through the system as shown in the figure below.
i. (15 pts) Set up, but do NOT solve, a system of differential equations that models the aforementioned scenario. Write your final answer using matrices and vectors.
ii. (2 pts) Over what interval of t will the solution be valid? Hint: You do not need to solve the system to answer this.

5. [2360/072222 (36 pts)] The following parts are not related.
(a) (24 pts) Solve the initial value problem $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{ll}-1 & 1 \\ -9 & 5\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{r}2 \\ -1\end{array}\right]$. Write your final answer as a single vector.
(b) (12 pts) Consider the linear system $\overrightarrow{\mathbf{x}}^{\prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$ where $\mathbf{A}=\left[\begin{array}{rr}k & 1 \\ -2 & k\end{array}\right]$ and k is a real number.
i. (3 pts) For what values, if any, of k does the system have a unique equilibrium solution at $(0,0)$?
ii. (3 pts) For what values, if any, of k will the equilibrium solution be a saddle?
iii. (3 pts) For what values, if any, of k will the equilibrium solution be a degenerate or star node?
iv. (3 pts) For what values, if any, of k will the trajectories in the phase plane be closed loops?

Short table of Laplace Transforms: $\mathscr{L}\{f(t)\}=F(s) \equiv \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t$
In this table, a, b, c are real numbers with $c \geq 0$, and $n=0,1,2,3, \ldots$

$$
\begin{gathered}
\mathscr{L}\left\{t^{n} e^{a t}\right\}=\frac{n!}{(s-a)^{n+1}} \quad \mathscr{L}\left\{e^{a t} \cos b t\right\}=\frac{s-a}{(s-a)^{2}+b^{2}} \quad \mathscr{L}\left\{e^{a t} \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}} \\
\mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{\mathrm{~d}^{n} F(s)}{\mathrm{d} s^{n}} \quad \mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) \quad \mathscr{L}\{\delta(t-c)\}=e^{-c s} \\
\mathscr{L}\left\{t f^{\prime}(t)\right\}=-F(s)-s \frac{\mathrm{~d} F(s)}{\mathrm{d} s} \quad \mathscr{L}\{f(t-c) \operatorname{step}(t-c)\}=e^{-c s} F(s) \quad \mathscr{L}\{f(t) \operatorname{step}(t-c)\}=e^{-c s} \mathscr{L}\{f(t+c)\} \\
\mathscr{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-s^{n-3} f^{\prime \prime}(0)-\cdots-f^{(n-1)}(0)
\end{gathered}
$$

