- This exam is worth 100 points and has 5 questions.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. |NO| calculators, cell phones, or other electronic devices or the internet are permitted. You are allowed one $8.5^{\circ} \times 11^{\circ}$ crib sheet with writing on one side.

At the top of the page containing your answer to problem 1, write the following italicized statement and sign your name to it: *"I will abide by the CU Boulder Honor Code on this exam."* FAILURE TO INCLUDE THIS MAY RESULT IN A PENALTY.

- 1. [2360/070822 (18 pts)] A mass of 1 kg is attached to a spring with restoring/spring constant k = 25 newton/m.
 - (a) (2 pts) Assuming there is no damping and that the system is driven by the forcing term $20 \cos(\omega_f t)$ newtons, find a value of ω_f , if any, that guarantees that the amplitude of the resulting oscillations grows without bound.
 - (b) (16 pts) Now assume that the system is driven by the forcing term $102 \cos t$ newtons and the damping force is 6 times the instantaneous velocity.
 - i. (4 pts) Write down the differential equation for this mass-spring motion.
 - ii. (4 pts) Verify that $x_p(t) = 4\cos t + \sin t$ is a particular solution to the differential equation in part (i).
 - iii. (6 pts) Find the general solution of the differential equation.
 - iv. (2 pts) Is the oscillator underdamped, overdamped or critically damped?
- 2. [2360/070822 (26 pts)] Consider the differential equation y''' 4y'' + 5y' = f(t).
 - (a) (6 pts) Find the solution when f(t) = 0.
 - (b) (4 pts) For the following f(t), write down the appropriate form of the particular solution that would be used for the Method of Undetermined Coefficients. Do **not** solve for the coefficients. No justification needed and no partial credit available.
 - i. $f(t) = t^2 e^{3t}$
 - ii. $f(t) = 3t \sin t$

iii.
$$f(t) = 5e^{-t} \sin t$$

- iv. $f(t) = \frac{(t^2 1)(t + 2)\sin t}{t + 1}$ for t > 0
- (c) (16 pts) Now let $f(t) = 40t 7 6e^{2t}$.
 - i. (10 pts) Find the particular solution.
 - ii. (4 pts) Write the general solution to the differential equation.
 - iii. (2 pts) Identify the transient and steady state solutions.

3. [2360/070822 (30 pts)] Consider the Euler-Cauchy equation $x^2y'' - 12y = \frac{49}{x^3}$, x > 0 with initial conditions y(1) = 5, y'(1) = -1.

- (a) (8 pts) Assuming solutions of the form $y(x) = x^r$, solve the associated homogeneous equation.
- (b) (6 pts) Show that your solution(s) to part (a) form(s) a basis for the solution space of the homogeneous equation.
- (c) (10 pts) Find the general solution to the original nonhomogeneous equation.
- (d) (6 pts) Solve the initial value problem.

CONTINUED

- 4. [2360/070822 (12 pts)] The following parts are not related.
 - (a) (8 pts) Convert the following initial value problem into a system of first order initial value problems. If possible, write your answer using matrices.

$$\cos t \frac{\mathrm{d}^4 y}{\mathrm{d}t^4} - 2e^t \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = 3 \quad y(1) = 1, \ y'(1) = -1, \ y''(1) = 2, \ y'''(1) = 0 \quad 0 \le t < \pi/2$$

(b) (4 pts) Which of the following differential equations describes a conservative system? No explanation necessary and no partial credit available.

i.
$$\ddot{x} = (\dot{x})^2$$

ii. $\ddot{x} = x^2 + t^2$
iii. $3\ddot{x} = -5x^2$

- iv. $2\ddot{x} + 2\dot{x} + 3x = 0$
- 5. [2360/070822 (14 pts) The following parts are not related.
 - (a) (6 pts) Consider the linear operator

$$L(\vec{\mathbf{y}}) = a_9(t)y^{(9)}(t) + a_8(t)y^{(8)}(t) + \dots + a_1(t)y'(t) + a_0(t)y(t)$$

where $a_0(t), a_1(t), \ldots, a_9(t)$ are continuous on some interval I.

- i. (3 pts) Is the set of solutions to $L(\vec{\mathbf{y}}) = 1$ a vector space? Justify your answer.
- ii. (3 pts) Let $y_1(t), y_2(t), \ldots, y_{10}(t)$ be solutions to $L(\vec{\mathbf{y}}) = 0$. Is the set $\{y_1, y_2, \ldots, y_{10}\}$ a basis for the solution space of $L(\vec{\mathbf{y}}) = 0$? Justify your answer.
- (b) (8 pts) Find the general solution of $y^{(5)} + 2y^{(4)} + y^{\prime\prime\prime} = 0$.