1. [APPM 2360 Exam (18 pts)] Parts (a) and (b) are not related.

(a) (10 pts) Let \(A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 1 & 1 & 0 \end{bmatrix} \)

i. Find all of the eigenvalues of \(A \) and state the multiplicity of each.

ii. Find a basis for and the dimension of the eigenspace corresponding to the eigenvalue with multiplicity greater than 1.

(b) (8 pts) Determine if the set of vectors \(\{1, 1-t, 2-4t + t^2, 6-18t + 9t^2 - t^3\} \) forms a basis for \(\mathbb{P}_3 \). Be sure to provide correct justification.

SOLUTION:

(a) i. The characteristic equation gives

\[
|A - \lambda I| = \begin{vmatrix} 1-\lambda & 0 & 2 \\ 0 & 1-\lambda & -2 \\ 1 & 1 & -\lambda \end{vmatrix} = -(1-\lambda)^2 = \lambda = 0 \text{ (multiplicity 1); } 1 \text{ (multiplicity 2)}
\]

ii. Solve the linear system of algebraic equations \((A - 1I) \vec{v} = \vec{0}\) with augmented matrix

\[
\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & -2 \\ 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
\]

which has solution \(\vec{v} = \begin{bmatrix} -t \\ t \\ 0 \end{bmatrix}, t \in \mathbb{R} \). A basis for the eigenspace is therefore \(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \) having dimension 1.

(b) Alternative 1:

\[
W[1, 1-t, 2-4t + t^2, 6-18t + 9t^2 - t^3](t) = \begin{vmatrix} 1 & 1-t & 2-4t + t^2 & 6-18t + 9t^2 - t^3 \\ 0 & -1 & -4 + 2t & -18 + 18t - 3t^2 \\ 0 & 0 & 2 & 18 - 6t \\ 0 & 0 & 0 & -6 \end{vmatrix} = 12 \neq 0
\]

The nonvanishing of the Wronskian implies the functions are linearly independent. Since we have four linearly independent functions in a vector space of dimension 4, these vectors form a basis for \(\mathbb{P}_3 \).

Alternative 2:

Let \(a_0 + a_1 t + a_2 t^2 + a_3 t^3 \) be an arbitrary vector in \(\mathbb{P}_3 \) where \(a_0, a_1, a_2, a_3 \in \mathbb{R} \). Can we find constants \(c_1, c_2, c_3, c_4 \) such that

\[
c_1(1) + c_2(1-t) + c_3(2-4t + t^2) + c_4(6-18t + 9t^2 - t^3) = a_0 + a_1 t + a_2 t^2 + a_3 t^3
\]

Equating coefficients of the various powers of \(t \) on both sides of the previous equation yields the linear system

\[
\begin{bmatrix} 1 & 1 & 2 & 6 \\ 0 & -1 & -4 & -18 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}
\]

The determinant of the coefficient matrix is 1 implying that the system has a unique solution. This implies that the vectors span \(\mathbb{P}_3 \). Furthermore, if the right hand side of the above linear system is replaced with \(\vec{0} \), the resulting system has only the trivial solution, showing that the vectors are linearly independent. We therefore have a linearly independent spanning set of vectors, in other words the vectors form a basis for \(\mathbb{P}_3 \).

2. [APPM 2360 Exam (25 pts)] Parts (a) and (b) are not related.

(a) (15 pts) Consider the vectors \(\begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} \) in \(\mathbb{R}^3 \).

i. (5 pts) Do the vectors form a basis for \(\mathbb{R}^3 \). Why or why not?
ii. (5 pts) Find all solutions of $A\vec{x} = \vec{0}$ where the columns of A are the vectors in the set in the order shown.

iii. (5 pts) Based on your answer in (ii), find the dimension of and a basis for the subspace consisting of all solutions of the equation $A\vec{x} = \vec{0}$

(b) (10 pts) Consider the linear system

\[
\begin{align*}
 x_1 + 3x_3 &= 1 \\
 2x_1 + x_2 + 4x_3 - x_4 &= 2 \\
 3x_1 + 2x_2 + 4x_3 &= -1 \\
 3x_2 - x_3 &= -2
\end{align*}
\]

Use Cramer’s Rule to find x_2.

SOLUTION:

(a) i. We need to see if the only solution to the equation

\[
\begin{align*}
 c_1 \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} + c_2 \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix} + c_3 \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\end{align*}
\]

is $c_1 = c_2 = c_3 = 0$. This is equivalent to

\[
\begin{bmatrix} 1 & 5 & -3 \\ -1 & -4 & 1 \\ -2 & -7 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

with augmented matrix

\[
\begin{bmatrix} 1 & 5 & -3 & 0 \\ -1 & -4 & 1 & 0 \\ -2 & -7 & 0 & 0 \end{bmatrix}
\]

This matrix has only two pivot columns, implying that the linear system has nontrivial solutions, further implying that the vectors are linearly dependent. Consequently, even though we have three vectors in a vector space of dimension 3, since they are not linearly independent, they cannot form a basis for \mathbb{R}^3.

Alternatively, the determinant of the coefficient matrix vanishes, meaning that the homogeneous system has nontrivial solutions, implying that the set of vectors is linearly dependent.

ii. The given linear system is the same linear system that was used in part i. From the RREF, the free variable is x_3 which we can set to t. We then have $x_1 = -7t$ and $x_2 = 2t$ so the solutions to the linear system are $\vec{x} = t \begin{bmatrix} -7 \\ 2 \\ 1 \end{bmatrix}$, $t \in \mathbb{R}$.

iii. A basis for the solutions to the linear system is $\left\{ \begin{bmatrix} -7 \\ 2 \\ 1 \end{bmatrix} \right\}$ which has dimension 1.

(b) In matrix form ($A\vec{x} = \vec{b}$) this system is

\[
\begin{align*}
 1 & \ 0 & \ 3 & \ 0 & \ x_1 \\
 2 & \ 1 & \ 4 & \ -1 & \ x_2 \\
 3 & \ 2 & \ 4 & \ 0 & \ x_3 \\
 0 & \ 3 & \ -1 & \ 0 & \ x_4
\end{align*}
\]

The determinant of the coefficient matrix is as follows, which we compute by expanding along column 4 (then expanding along the first row in the resulting 3×3 matrix)

\[
\begin{align*}
 \begin{vmatrix} 1 & 0 & 3 & 0 \\ 2 & 1 & 4 & -1 \\ 3 & 2 & 4 & 0 \\ 0 & 3 & -1 & 0 \end{vmatrix} &= -1(-1)^{2+4} \begin{vmatrix} 0 & 3 \\ 3 & -1 \end{vmatrix} = -1 \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = -1 \begin{vmatrix} 1 & 4 \\ 3 & -1 \end{vmatrix} + 3(-1)^{1+3} \begin{vmatrix} 2 & -1 \\ 3 & 0 \end{vmatrix} = -13
\end{align*}
\]

We then need to compute $|A_2|$, given by replacing column two in the coefficient matrix with the right hand side of the system, again expanding along the fourth column (then expanding along the third row in the resulting 3×3 matrix)

\[
\begin{align*}
 \begin{vmatrix} 1 & 1 & 3 & 0 \\ 2 & 2 & 4 & -1 \\ 3 & -1 & 4 & 0 \\ 0 & -2 & -1 & 0 \end{vmatrix} &= -1(-1)^{2+4} \begin{vmatrix} 1 & 0 & 3 \\ 2 & 4 & 0 \\ 3 & -1 & 4 \end{vmatrix} = -1 \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = -1 \begin{vmatrix} 2 & 4 \\ 3 & -1 \end{vmatrix} + 3(-1)^{1+3} \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 6
\end{align*}
\]

Thus, Cramer’s Rule gives $x_2 = |A_2|/|A| = -6/13$.

3. [2360/062521 Exam (20 pts)] Parts (a), (b), and (c) are not related.

(a) (5 pts) Are the functions \(\{ 1, \sin^2 t, \cos^2 t \} \) linearly independent or linearly dependent on \(\mathbb{R} \)? Justify your answer.

(b) (10 pts) Given that \(M_{22} \) is the vector space of all \(2 \times 2 \) matrices, determine if the following subsets, \(W \), are subspaces of \(M_{22} \). Justify your answer.

 i. (5 pts) \(W \) is the set of matrices of the form \[
 \begin{bmatrix}
 a & -b \\
 b & c
 \end{bmatrix}
 \] where \(a, b, c \) are real numbers.

 ii. (5 pts) \(W \) is the set of matrices of the form \[
 \begin{bmatrix}
 \frac{2}{a} & a \\
 -a & 3
 \end{bmatrix}
 \] where \(a \) is a real number.

(c) (5 pts) Is the set of solutions to the differential equation \(y' + (\sin t)y = \cos t \) a vector space? Justify your answer.

Solution:

(a) The Wronskian of the functions is (using trig identities to simplify things)

\[
\begin{vmatrix}
1 & \sin^2 t & \cos^2 t \\
0 & \sin 2t & -\sin 2t \\
0 & 2\cos 2t & -2\cos 2t
\end{vmatrix} = 0
\]

so we cannot use this result to determine if the functions are linearly independent or not. Instead, note that

\[c_1(1) + c_2 \sin^2 t + c_3 \cos^2 t = 0\]

is satisfied, for all \(x \), for \(c_1 = 1 \) and \(c_2 = c_3 = -1 \). This shows that the functions are linearly dependent.

(b) i. The zero vector, \[
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

is in \(W \) so we check for closure using linear combinations. Let

\[
\begin{bmatrix}
a_1 & b_1 \\
b_1 & c_1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
a_2 & b_2 \\
b_2 & c_2
\end{bmatrix}
\in W \quad \text{and} \quad p, q \in \mathbb{R}
\]

Then

\[
p\begin{bmatrix}
a_1 & b_1 \\
b_1 & c_1
\end{bmatrix} + q\begin{bmatrix}
a_2 & b_2 \\
b_2 & c_2
\end{bmatrix} = \begin{bmatrix}
pa_1 + qa_2 & pb_1 + qb_2 \\
pb_1 + qb_2 & pc_1 + qc_2
\end{bmatrix} \in W
\]

showing that the \(W \) is closed under vector addition and scalar multiplication and is thus a subspace of \(M_{22} \).

ii. Since the zero vector is not of the form of the given matrix, it is not in \(W \), therefore \(W \) is not a subspace.

(c) No. Since \(y = 0 \) is not a solution to the nonhomogeneous equation, it is not in the set of solutions and thus the set is not a vector space.

4. [2360/062521 Exam (37 pts)] Parts (a), (b) and (c) are not related.

(a) (18 pts) If \(A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} \), calculate the following, if possible. If not possible, simply write “not possible”. Hint: for part vi, consider using properties of determinants.

 i. \(AB \) ii. \(B^T A \) iii. \(AA^{-1} \) iv. \(A^T A \) v. \((BA)^T \) vi. \(|BB^T B^{-1}| \)

(b) (9 pts) The augmented matrix of the linear system \(Ax = b \) has been transformed, through a number of elementary row operations, to the following:

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & k & 1 \\
0 & 0 & k - k^2 - 1
\end{bmatrix}
\]

where \(k \) is a parameter. For which value(s) of \(k \), if any, does the system have ...

 i. no solution?
 ii. exactly one solution?
 iii. infinitely many solutions?
(c) (10 pts) You are given the matrices \(C \), \(D \) and \(u \) as follows:

\[
C = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \quad D = \begin{bmatrix} -\frac{5}{2} & \frac{3}{2} & \frac{7}{2} \\ 2 & -1 & -1 \\ 2 & -1 & 0 \end{bmatrix} \quad u = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}
\]

i. (4 pts) Compute \(DC \). Be sure to check your answer carefully.

ii. (6 pts) Without performing any elementary row operations or Gauss-Jordan Elimination, and applying what you found in part i, find the solution of \(C\bar{x} = \bar{u} \).

SOLUTION:

(a) i. \(AB = \begin{bmatrix} 3 & 2 \\ 7 & 4 \\ 1 & 0 \end{bmatrix} \)

ii. not possible

iii. not possible

iv. \(\left| \begin{array}{cc} 5 & 2 \\ 2 & 2 \end{array} \right| = 6 \)

v. not possible

vi. \(|BB^T| = |B||B^T||B^{-1}| = |B||B\left(\frac{1}{|B|} \right) = |B| = -2 \)

(b) Begin by noting that the determinant of the coefficient matrix is \(k(k - 1) \).

i. \(k = 0 \). Note that in this case the matrix becomes

\[
\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \quad R_3 = R_2 + R_3 \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
\]

ii. \(k \neq 0, 1 \). In this case the determinant is nonzero, implying a unique solution exists.

iii. \(k = 1 \) the last row contains all zeros implying the existence of a free parameter and infinitely many solutions.

(c) i. \(DC = I \) so that \(D = C^{-1} \)

ii. Multiply both sides of the matrix equation by \(D \) to yield

\[
D\left(C\bar{x}\right) = D\bar{u} \\
C^{-1}\left(C\bar{x}\right) = D\bar{u} \\
(C^{-1}C)\bar{x} = D\bar{u} \\
I\bar{x} = D\bar{u}
\]

\[
\bar{x} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}
\]