1. [APPM 2360 Exam (20 pts)] Let \(\mathbf{u} = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \end{bmatrix} \)

(a) (6 pts) Show that \(\mathbf{u}^T \mathbf{u} = \mathbf{I}_1 \), where \(\mathbf{I}_1 \) is the 1 \(\times \) 1 identity matrix.

(b) (6 pts) Compute \(\mathbf{H} = \mathbf{I}_3 - 2 \mathbf{u} \mathbf{u}^T \)

(c) (6 pts) Show that \(\mathbf{H} \) is nonsingular (invertible).

(d) (2 pts) Can Cramer’s Rule be used to solve the system \(\mathbf{H} \mathbf{x} = \mathbf{b} \)? Explain why or why not.

2. [APPM 2360 Exam (15 pts)] Consider the linear system

\[
\begin{align*}
 x - 4y &= 17 \\
 3x - 12y &= k \\
 -2x + 8y &= -34
\end{align*}
\]

(a) (8 pts) Use Gauss-Jordan Reduction to determine the value of \(k \) that makes the system consistent.

(b) (7 pts) Using the value of \(k \) found in part (a), write the solution to the system using the Nonhomogenous Principle \(\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p \).

3. [APPM 2360 Exam (20 pts)] Use the matrix inverse to find the solution to the system

\[
\begin{align*}
 x_1 + 2x_2 + 3x_3 &= 3 \\
 x_2 + 2x_3 &= 1 \\
 -2x_1 + 3x_3 &= 4
\end{align*}
\]

4. [APPM 2360 (25 pts)] The following problems are not related.

(a) (12 pts) Suppose \(\mathbf{A} \), \(\mathbf{B} \), \(\mathbf{C} \) are \(n \times n \) matrices with \(|\mathbf{A}| = 3 \), \(|\mathbf{B}| = 1 \), \(|\mathbf{C}| = 0 \). Calculate the following or explain why they fail to exist.

i. \(|\mathbf{AB}| \)

ii. \(|\mathbf{B}^T| \)

iii. \(|\mathbf{B}^2\mathbf{A}\mathbf{C}^{-1}| \)

iv. \(|\mathbf{D}| \), where \(\mathbf{D} \) is the matrix obtained by interchanging the second and \(n^{th} \) rows of \(\mathbf{A} \)

(b) (9 pts) Let \(\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \\ -1 & 0 \end{bmatrix} \) and \(\mathbf{B} = \begin{bmatrix} 4 & -2 \\ 1 & 1 \\ 0 & 3 \end{bmatrix} \). Calculate the following or explain why they fail to exist.

i. \(\mathbf{A}^T \)

ii. \(\mathbf{A}^T + \mathbf{B} \)

iii. \((\mathbf{B}^T)^{-1} \)

(c) (4 pts) Let \(\mathbf{A} \) be an \(n \times n \) invertible matrix satisfying \(\mathbf{A}^3 + 2\mathbf{A} = \mathbf{I} \). Find an expression for \(\mathbf{A}^{-1} \).

5. [APPM 2360 Exam (20 pts)] The following problems are not related.

(a) (8 pts) Decide if the following subsets \(\mathcal{W} \) of the given vector space \(\mathcal{V} \) are subspaces. Assume that the standard operations of vector addition and scalar multiplication apply. Justify the correct answer completely for full credit. A simple yes/no will result in zero points.

i. \(\mathcal{V} = \mathcal{C}([0, 1]) ; \quad \mathcal{W} = \left\{ f(t) \left| \int_0^1 f(t) \, dt = 2 \right. \right\} \)

ii. \(\mathcal{V} = \mathcal{M}_{2 \times 3} ; \quad \mathcal{W} = \text{matrices of the form} \begin{bmatrix} 0 & a & b \\ c & 0 & d \end{bmatrix} \text{ where} a, b, c, d \text{ are real numbers.} \)

(b) (4 pts) Determine whether or not the set \(\mathcal{S} = \{ 2, 1 - t, t + t^3 \} \) forms a basis for some vector space. If so, what is its dimension? If not, explain why not.

(c) (8 pts) Find the eigenvalues and eigenvectors of \(\mathbf{A} = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix} \).