1. [2360/031324 (10 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) All $n \times n$ matrices with 0 on and below the main diagonal are singular.
(b) Suppose \mathbf{Q} is a matrix with the property that $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$. If \mathbf{H} is invertible and $\mathbf{H}\left(\mathbf{Q}^{T} \mathbf{H}\right)^{-1} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{y}}$ then $\overrightarrow{\mathbf{x}}=\mathbf{Q} \overrightarrow{\mathbf{y}}$.
(c) Given $\mathbf{C} \overrightarrow{\mathbf{y}}=\overrightarrow{\mathbf{w}}$ where \mathbf{C} is a 5×5 matrix with eigenvalues $\{0,0,1,3+5 i, 3-5 i\}$, Cramer's rule can be used to find the solution $\overrightarrow{\mathbf{y}}$.
(d) If $\mathbf{C}=\left[\begin{array}{rr}2 & 0 \\ -8 & -2\end{array}\right]$ and $\mathbf{D}=\left[\begin{array}{rr}4 & 0 \\ -2 & 3\end{array}\right]$, then $\mathbf{C D}=\mathbf{D C}$.
(e) Any set of 4 vectors in the vector space \mathbb{R}^{4} will always span \mathbb{R}^{4}.

SOLUTION:

(a) TRUE The determinant of an upper triangular matrix is the product of the diagonal elements, which are all zero in this instance, making the determinant 0 , implying that the matrix is singular.
(b) FALSE

$$
\begin{gathered}
\mathbf{H}\left(\mathbf{Q}^{T} \mathbf{H}\right)^{-1} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{y}} \\
\mathbf{H H}^{-1}\left(\mathbf{Q}^{\mathrm{T}}\right)^{-1} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{y}} \\
\mathbf{I}\left(\mathbf{Q}^{-1}\right)^{-1} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{y}} \\
\mathbf{Q} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{y}} \\
\overrightarrow{\mathbf{x}}=\mathbf{Q}^{\mathrm{T}} \overrightarrow{\mathbf{y}}
\end{gathered}
$$

(c) FALSE Since 0 is an eigenvalue of $\mathbf{C},|\mathbf{C}|=0$, implying that \mathbf{C} is singular, further implying that Cramer's Rule cannot be used.
(d) TRUE $\mathbf{C D}=\left[\begin{array}{rr}2 & 0 \\ -8 & -2\end{array}\right]\left[\begin{array}{rr}4 & 0 \\ -2 & 3\end{array}\right]=\left[\begin{array}{rr}8 & 0 \\ -28 & -6\end{array}\right]$ and $\mathbf{D C}=\left[\begin{array}{rr}4 & 0 \\ -2 & 3\end{array}\right]\left[\begin{array}{rr}2 & 0 \\ -8 & -2\end{array}\right]=\left[\begin{array}{rr}8 & 0 \\ -28 & -6\end{array}\right]$
(e) FALSE The four vectors must be linearly independent to span \mathbb{R}^{4}.
2. [2360/031324 (12 pts)] Find all values of k, if any, for which the vector $\left[\begin{array}{c}1 \\ k \\ 2\end{array}\right]$ is in the column space of $\mathbf{A}=\left[\begin{array}{lllll}1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 & 2 \\ 3 & 6 & 4 & 1 & 1\end{array}\right]$

SOLUTION:

This is equivalent to finding values of k that make $\mathbf{A} \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}1 \\ k \\ 2\end{array}\right]$ consistent.

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & 1 & 0 & 0 & 1 \\
0 & 0 & 2 & 2 & 2 & k \\
3 & 6 & 4 & 1 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{lllll|r}
1 & 2 & 1 & 0 & 0 & 1 \\
0 & 0 & 2 & 2 & 2 & k \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{lllll|r}
1 & 2 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & k+2
\end{array}\right]
$$

Thus, if $k=-2,\left[\begin{array}{l}1 \\ k \\ 2\end{array}\right] \in \operatorname{Col} \mathbf{A}$.
3. [2360/031324 (20 pts)] After a number of elementary row operations, the augmented matrix associated with a certain linear system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is

$$
\left[\begin{array}{lll|l}
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 2
\end{array}\right]
$$

(a) (2 pts) Is the matrix in RREF? If not, find the RREF.
(b) (2 pts) How many solutions are there to $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$? Briefly justify your answer.
(c) (2 pts) What is $|\mathbf{A}|$? Briefly justify your answer.
(d) (2 pts) What is the rank of A? Briefly justify your answer.
(e) (12 pts) The following parts concern the associated homogeneous system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$?
i. (2 pts) Write down the RREF of the augmented matrix for this system.
ii. (2 pts) How many solutions does the system have?
iii. (6 pts) Find a basis for the solution space.
iv. (2 pts) What is the dimension of the solution space?

SOLUTION:

(a) No. The RREF is $\left[\begin{array}{lll|l}1 & 0 & 1 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(b) None. The system is inconsistent. This follows from the fact that one row of the RREF is $000 \mid 1$.
(c) $|\mathbf{A}|=0$. The coefficient matrix contains a row of all zeros.
(d) $\operatorname{rank} \mathbf{A}=2$. There are two pivot columns in the RREF.
(e)
i. $\left[\begin{array}{lll|l}1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
ii. infinitely many
iii. Solutions are of the form $\overrightarrow{\mathbf{x}}=\left[\begin{array}{r}-r \\ -3 r \\ r\end{array}\right], r \in \mathbb{R}$. A basis for the solution space is therefore $\left\{\left[\begin{array}{r}-1 \\ -3 \\ 1\end{array}\right]\right\}$.
iv. The dimension of the solution space is 1 .

4. [2360/031324 (15 pts)] Use the inverse of an appropriate matrix to find the solution of the system | $x_{1}+3 x_{2}+3 x_{3}=-2$ |
| :--- |
| $x_{1}+3 x_{2}+4 x_{3}=2$ |
| $x_{1}+4 x_{2}+3 x_{3}=-1$ |.

SOLUTION:

The system can be written as $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ where $\mathbf{A}=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3\end{array}\right]$ and $\overrightarrow{\mathbf{b}}=\left[\begin{array}{r}-2 \\ 2 \\ -1\end{array}\right]$ with solution $\overrightarrow{\mathbf{x}}=\mathbf{A}^{-1} \overrightarrow{\mathbf{b}}$. We find \mathbf{A}^{-1}.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 3 & 3 & 1 & 0 & 0 \\
1 & 3 & 4 & 0 & 1 & 0 \\
1 & 4 & 3 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{2}^{*}=-R_{1}+R_{2} \\
R_{3}^{*}=-R_{1}+R_{3}
\end{array}\left[\begin{array}{lll|rrr}
1 & 3 & 3 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1
\end{array}\right] \underset{R_{2}^{*}=-3 R_{3}+R_{1}}{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{rrr|rrr}
1 & 0 & 3 & 4 & 0 & -3 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 1 & 0
\end{array}\right]} \\
& R_{1}^{*}=-3 R_{3}+R_{1}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 7 & -3 & -3 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & -1 & 1 & 0
\end{array}\right] \Longrightarrow \mathbf{A}^{-1}=\left[\begin{array}{rrr}
7 & -3 & -3 \\
-1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right] \\
& \Longrightarrow \overrightarrow{\mathbf{x}}=\left[\begin{array}{rrr}
7 & -3 & -3 \\
-1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{r}
-2 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-17 \\
1 \\
4
\end{array}\right]
\end{aligned}
$$

5. [2360/031324 (15 pts) Determine if the following subsets, \mathbb{W}, of the given vector space, \mathbb{V}, are subspaces. Assume the standard operations appropriate to \mathbb{V} apply. Justify your answers.
(a) $(5 \mathrm{pts}) \mathbb{V}=\mathbb{R}^{2} ; \mathbb{W}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}| | x_{1}\left|=\left|x_{2}\right|\right\}\right.$
(b) (5 pts$) \mathbb{V}=\mathbb{P}_{1} ; \mathbb{W}$ is the set of all polynomials having the form $\frac{m}{n}+a t$, where a is a real number and m, n are integers.
(c) (5 pts) $\mathbb{V}=\mathbb{M}_{22}$; \mathbb{W} is the set of all 2×2 matrices whose off-diagonal elements sum to zero.

SOLUTION:

(a) Not a subspace. Not closed under vector addition: $(1,-1)$ and $(1,1)$ are in \mathbb{W}, but $(1,-1)+(1,1)=(2,0)$ is not in \mathbb{W}.
(b) Not a subspace. Not closed under scalar multiplication. For example, $\frac{3}{4}+t \in \mathbb{W}$ but $\sqrt{3}\left(\frac{3}{4}+t\right)=\frac{3 \sqrt{3}}{4}+\sqrt{3} t \notin \mathbb{W}$ since $3 \sqrt{3} / 4$ is not a ratio of integers.
(c) Subspace. \mathbb{W} is nonempty. Let $\overrightarrow{\mathbf{u}}=\left[\begin{array}{rr}a_{1} & b_{1} \\ -b_{1} & c_{1}\end{array}\right]$ and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{rr}a_{2} & b_{2} \\ -b_{2} & c_{2}\end{array}\right]$ be in \mathbb{W} and let $p, q \in \mathbb{R}$. Then

$$
p \overrightarrow{\mathbf{u}}+q \overrightarrow{\mathbf{v}}=p\left[\begin{array}{rr}
a_{1} & b_{1} \\
-b_{1} & c_{1}
\end{array}\right]+q\left[\begin{array}{rr}
a_{2} & b_{2} \\
-b_{2} & c_{2}
\end{array}\right]=\left[\begin{array}{rr}
p a_{1} & p b_{1} \\
-p b_{1} & p c_{1}
\end{array}\right]+\left[\begin{array}{rr}
q a_{2} & q b_{2} \\
-q b_{2} & q c_{2}
\end{array}\right]=\left[\begin{array}{cc}
p a_{1}+q a_{2} & p b_{1}+q b_{2} \\
-\left(p b_{1}+q b_{2}\right) & p c_{1}+p c_{2}
\end{array}\right] \in \mathbb{W}
$$

6. [2360/031324 (12 pts)] Let $\mathbf{A}=\left[\begin{array}{rr}4 & -5 \\ 1 & 0\end{array}\right]$.
(a) (5 pts) Find the eigenvalues of \mathbf{A}.
(b) (7 pts) Find the eigenvector associated with the eigenvalue from part (a) with positive imaginary part.

SOLUTION:

(a)

$$
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
4-\lambda & -5 \\
1 & -\lambda
\end{array}\right|=(4-\lambda)(-\lambda)+5=\lambda^{2}-4 \lambda+5=0 \Longrightarrow \lambda=\frac{4 \pm \sqrt{(-4)^{2}-4(5)}}{2}=\frac{4 \pm 2 i}{2}=2 \pm i
$$

(b) Need to solve $[\mathbf{A}-(2+i) \mathbf{I}] \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}$

$$
\left[\begin{array}{cc|c}
4-(2+i) & -5 & 0 \\
1 & -(2+i) & 0
\end{array}\right]=\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cc|c}
1 & -2-i & 0 \\
2-i & -5 & 0
\end{array}\right] \xrightarrow{R_{2}^{*}=(-2+i) R_{1}+R_{2}}\left[\begin{array}{cc|c}
1 & -2-i & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The first row of the matrix yields $v_{1}-(2+i) v_{2}=0 \Longrightarrow v_{1}=(2+i) v_{2} \Longrightarrow \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
7. [2360/031324 (16 pts)] Consider the set of vectors in \mathbb{P}_{2} given by $\left\{1-2 x^{2}, 2 x-1, x^{2}+x-1\right\}$.
(a) (8 pts) Show that the Wronskian of the functions is inconclusive when deciding whether or not the set is linearly independent.
(b) (8 pts) Does the set form a basis for \mathbb{P}_{2} ? Justify your answer.

SOLUTION:

(a)

$$
\begin{aligned}
W(x) & =\left|\begin{array}{ccc}
1-2 x^{2} & 2 x-1 & x^{2}+x-1 \\
-4 x & 2 & 2 x+1 \\
-4 & 0 & 2
\end{array}\right|=-4(-1)^{3+1}\left|\begin{array}{cc}
2 x-1 & x^{2}+x-1 \\
2 & 2 x+1
\end{array}\right|+2(-1)^{3+3}\left|\begin{array}{cc}
1-2 x^{2} & 2 x-1 \\
-4 x & 2
\end{array}\right| \\
& =-4\left(4 x^{2}+2 x-2 x-1-2 x^{2}-2 x+2\right)+2\left(2-4 x^{2}+8 x^{2}-4 x\right) \\
& =-8 x^{2}+8 x-4+4+8 x^{2}-8 x=0
\end{aligned}
$$

Since the Wronskian is identically 0 , we cannot determine if the functions are linearly independent.
(b) Since there are 3 vectors in a vector space of dimension 3, they will form a basis if they are linearly independent. Since the Wronskian test for linear independence was inconclusive, we check to see if the only solution to

$$
c_{1}\left(1-2 x^{2}\right)+c_{2}(2 x-1)+c_{3}\left(x^{2}+x-1\right)=0+0 x+0 x^{2}
$$

is the trivial solution, $c_{1}=c_{2}=c_{3}=0$. Equating coefficients gives

$$
\left.\begin{array}{c}
c_{1}-c_{2}-c_{3}=0 \\
2 c_{2}+c_{3}=0 \\
-2 c_{1}+c_{3}=0
\end{array}\right\} \Longrightarrow\left[\begin{array}{rrr}
1 & -1 & -1 \\
0 & 2 & 1 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

indicating that the system has nontrivial solutions and the vectors are linearly dependent. Consequently, they cannot form a basis for \mathbb{P}_{2}.

Alternatively, one might, by inspection, be able to see that $1\left(1-2 x^{2}\right)-1(2 x-1)+2\left(x^{2}+x-1\right)=0+0 x+0 x^{2}$, also indicating that the vectors are linearly dependent.

As another alternative, the RREF is $\left[\begin{array}{rrr|r}1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, indicating the existence of nontrivial solutions.

