- This exam is worth 100 points and has 7 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Begin each problem on a new page.
- DO NOT LEAVE THE EXAM UNTIL YOUR HAVE SATISFACTORILY SCANNED AND UPLOADED YOUR EXAM TO GRADESCOPE.
- You are taking this exam in a proctored and honor code enforced environment. No calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one $8.5 " \times 11 "$ crib sheet with writing on one side.

0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND Your SIGNATURE may result in a penalty.
1. [2360/031324 (10 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) All $n \times n$ matrices with 0 on and below the main diagonal are singular.
(b) Suppose \mathbf{Q} is a matrix with the property that $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$. If \mathbf{H} is invertible and $\mathbf{H}\left(\mathbf{Q}^{T} \mathbf{H}\right)^{-1} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{y}}$ then $\overrightarrow{\mathbf{x}}=\mathbf{Q} \overrightarrow{\mathbf{y}}$.
(c) Given $\mathbf{C} \overrightarrow{\mathbf{y}}=\overrightarrow{\mathbf{w}}$ where \mathbf{C} is a 5×5 matrix with eigenvalues $\{0,0,1,3+5 i, 3-5 i\}$, Cramer's rule can be used to find the solution $\overrightarrow{\mathbf{y}}$.
(d) If $\mathbf{C}=\left[\begin{array}{rr}2 & 0 \\ -8 & -2\end{array}\right]$ and $\mathbf{D}=\left[\begin{array}{rr}4 & 0 \\ -2 & 3\end{array}\right]$, then $\mathbf{C D}=\mathbf{D C}$.
(e) Any set of 4 vectors in the vector space \mathbb{R}^{4} will always span \mathbb{R}^{4}.
2. [2360/031324 (12 pts)] Find all values of k, if any, for which the vector $\left[\begin{array}{c}1 \\ k \\ 2\end{array}\right]$ is in the column space of $\mathbf{A}=\left[\begin{array}{lllll}1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 & 2 \\ 3 & 6 & 4 & 1 & 1\end{array}\right]$
3. [2360/031324 (20 pts)] After a number of elementary row operations, the augmented matrix associated with a certain linear system $\mathbf{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ is

$$
\left[\begin{array}{lll|l}
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 2
\end{array}\right]
$$

(a) (2 pts) Is the matrix in RREF? If not, find the RREF.
(b) (2 pts) How many solutions are there to $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$? Briefly justify your answer.
(c) (2 pts) What is $|\mathbf{A}|$? Briefly justify your answer.
(d) (2 pts) What is the rank of \mathbf{A} ? Briefly justify your answer.
(e) (12 pts) The following parts concern the associated homogeneous system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$?
i. (2 pts) Write down the RREF of the augmented matrix for this system.
ii. (2 pts) How many solutions does the system have?
iii. (6 pts) Find a basis for the solution space.
iv. (2 pts) What is the dimension of the solution space?

$$
\begin{aligned}
& x_{1}+3 x_{2}+3 x_{3}=-2 \\
& x_{1}+3 x_{2}+4 x_{3}=2 \\
& x_{1}+4 x_{2}+3 x_{3}=-1
\end{aligned} .
$$

4. [2360/031324 (15 pts)] Use the inverse of an appropriate matrix to find the solution of the system
5. [2360/031324 (15 pts) Determine if the following subsets, \mathbb{W}, of the given vector space, \mathbb{V}, are subspaces. Assume the standard operations appropriate to \mathbb{V} apply. Justify your answers.
(a) $(5 \mathrm{pts}) \mathbb{V}=\mathbb{R}^{2} ; \mathbb{W}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}| | x_{1}\left|=\left|x_{2}\right|\right\}\right.$
(b) $(5 \mathrm{pts}) \mathbb{V}=\mathbb{P}_{1} ; \mathbb{W}$ is the set of all polynomials having the form $\frac{m}{n}+a t$, where a is a real number and m, n are integers.
(c) (5 pts) $\mathbb{V}=\mathbb{M}_{22} ; \mathbb{W}$ is the set of all 2×2 matrices whose off-diagonal elements sum to zero.
6. [2360/031324 (12 pts)] Let $\mathbf{A}=\left[\begin{array}{rr}4 & -5 \\ 1 & 0\end{array}\right]$.
(a) (5 pts) Find the eigenvalues of \mathbf{A}.
(b) (7 pts) Find the eigenvector associated with the eigenvalue from part (a) with positive imaginary part.
7. $\left[2360 / 031324\right.$ (16 pts)] Consider the set of vectors in \mathbb{P}_{2} given by $\left\{1-2 x^{2}, 2 x-1, x^{2}+x-1\right\}$.
(a) (8 pts) Show that the Wronskian of the functions is inconclusive when deciding whether or not the set is linearly independent.
(b) (8 pts) Does the set form a basis for \mathbb{P}_{2} ? Justify your answer.
