
APPM 2360 Exam 3 Spring 2023

1. [2360/041923 (20 pts)] Consider the initial value problem y′′′ − 2y′′ = 64e−2t, y(0) = y′(0) = 0, y′′(0) = 4.

(a) (12 pts) Solve the initial value problem, using the methods of Chapter 4 (that is, do not use Laplace transforms).

(b) (8 pts) Write the initial value problem as a system of first order differential equations. If possible, write the system, including the
initial conditions, in the form #„x ′ = A #„x +

#„

f , #„x(0) = # „x0. If not possible, say so.

SOLUTION:

(a) The characteristic equation is r3 − 2r2 = r2(r − 2) = 0 =⇒ r = 0 (multiplicity 2), r = 2 (multiplicity 1). Basis for the
solution space of the homogeneous equation is

{
1, t, e2t

}
. Let yp = Ae−2t and substitute into the nonhomogeneous equation to

get

−8Ae−2t − 2
(
4Ae2t

)
= −16Ae−2t = 64e−2t =⇒ A = −4

The general solution is y(t) = c1 + c2t+ c3e
2t − 4e−2t. Applying the initial conditions yields

y(0) = c1 + c3 − 4 = 0

y′(t) = c2 + 2c3e
2t + 8e−2t =⇒ y′(0) = c2 + 2c3 + 8 = 0

y′′(t) = 4c3e
2t − 16e−2t =⇒ y′′(0) = 4c3 − 16 = 4

4c3 = 20 =⇒ c3 = 5

c2 = −8− 2(5) = −18

c1 = 4− 5 = −1

The solution to the initial value problem is y(t) = 5e2t − 4e−2t − 18t− 1.

(b) Let u1 = y, u2 = y′, u3 = y′′. Then

u′1 = y′ = u2

u′2 = y′′ = u3

u′3 = y′′′ = 2y′′ + 64e−2t = 2u3 + 64e−2tu′1u′2
u′3

 =

0 1 0
0 0 1
0 0 2

u1

u2

u3

+

 0
0

64e−2t

 ,

u1(0)
u2(0)
u3(0)

 =

00
4


which is in the form #„x ′ = A #„x +

#„

f , #„x(0) = # „x0.

�

2. [2360/041923 (24 pts)] On a separate page in your bluebook, write the letters (a) through (l) in a column. Then for the following questions,
write the word TRUE or FALSE next to each letter, as appropriate. No partial credit given and no work need be shown. If you do any
work to come up with your answers, please do it elsewhere - do not include it in your list of answers (this helps with grading).

An harmonic oscillator consisting of a 2-kg mass attached to a spring is horizontally aligned on a table with x measuring the displace-
ment of the mass from its equilibrium position. The damping force is given as −2pẋ, where p is a nonnegative real number, and the
circular frequency of the oscillator is ω0 =

√
3.

(a) If the oscillator is unforced, the differential equation governing the motion is 2ẍ+ 2pẋ+
√
3x = 0.

(b) If 0 ≤ p < 2
√
3, the mass will pass through its equilibrium position more than once if it is given a nonzero initial velocity.

(c) If p = 0 and the oscillator is forced by f(t) = −3 cos
√
3t, then the oscillator will be in resonance.

(d) If the mass is released from rest 2 meters to the left of its equilibrium position, the initial conditions are x(0) = 0, ẋ(0) = −2.

(e) The oscillator will be critically damped only if p = 2
√
3.

(f) Solutions to the differential equation will be bounded and exhibit beats if p = 0 and the oscillator is driven by f(t) =
100 cos

[(√
3− 0.1

)
t
]
.

(g) If p = 0 and the oscillator is driven by a constant force of F0, then the system is conservative.

(h) If the oscillator is driven by f(t) = F0 cos
√
3t (F0 constant), its solutions will be unbounded for all values of p.



(i) If the oscillator is forced by f(t) =
t

t+ 1
, the particular solution cannot be found using variation of parameters.

(j) If p = 4 and the forcing function is f(t) = e−3t + et, the guess for the particular solution to be used in the method of
undetermined coefficients is yp = Ate−3t +Bet.

(k) If p > 0, and the oscillator is unforced, lim
t→∞

x(t) = 0.

(l) For any value of p ≥ 0, if the oscillator is forced by f(t) = cos 20t, the steady state motion will be oscillatory.

SOLUTION:

(a) FALSE ω0 =
√
3 =

√
k/2 =⇒ k = 6 so the correct equation is 2ẍ+ 2pẋ+ 6x = 0.

(b) TRUE The oscillator has to be underdamped or undamped to exhibit oscillatory behavior. To be undamped requires p = 0. To
be underdamped we need 4p2 − 4mk < 0 =⇒ p2 < mk =⇒ p <

√
(2)(6) = 2

√
3. Thus 0 ≤ p < 2

√
3.

(c) TRUE The frequency of the forcing function equals the circular frequency of the oscillator.

(d) FALSE x(0) = −2, ẋ(0) = 0

(e) TRUE 4p2 − 4mk = 0 =⇒ p2 − (2)(6) = 0 =⇒ p = 2
√
3

(f) TRUE The forcing frequency is not equal to the circular frequency, therefore the oscillator is not in resonance and the solutions
will be bounded. Since the forcing frequency is “close” to the circular frequency, beats will occur.

(g) TRUE In this case, the equation is 2ẍ+6x = F0 or 2ẍ+(6x−F0) = 0 which is autonomous and in the form mẍ+V ′(x) = 0.

(h) FALSE Unbounded solutions (resonance) are only possible in undamped oscillators so p must be zero. (Note: the forcing
frequency is correct for resonance).

(i) FALSE Variation of parameters must be used since the forcing function is not a member of the family of forcing functions that
allow the method of undetermined coefficients to be used.

(j) TRUE The differential equation in this case is 2ẍ + 8ẋ + 6x = e−3t + et. The characteristic equation is 2r2 + 8r + 6 =
2(r2 + 4r + 3) = 2(r + 3)(r + 1) = 0 =⇒ r = −3,−1 giving solutions to the homogeneous equation as e−3t, e−t.

(k) TRUE Solutions to all damped, unforced oscillators approach zero as t goes to infinity since the roots of the characteristic
equation are either negative real numbers or have negative real parts in case they are complex.

(l) TRUE If p = 0 the solution will have the form x(t) = c1 cos
√
3t + c2 sin

√
3t + A cos 20t + B sin 20t, which is clearly

oscillatory. If p > 0, the solution will look like x(t) = transient solution + A cos 20t + B sin 20t, again exhibiting oscillatory
behavior in the steady state solution which consists of the last two terms.

�

3. [2360/041923 (36 pts)] Let L( #„y ) = 2y′′ − 12y′ + 18y.

(a) (8 pts) Is
{
e3t, te3t

}
a basis for the solution space of L( #„y ) = 0? Justify your answer completely.

(b) (12 pts) Use the method of undetermined coefficients to find a particular solution of L( #„y ) = 9t2 − 15.

(c) (12 pts) Use variation of parameters to find a particular solution of L( #„y ) = 12t−1e3t. Assume t > 0.

(d) (4 pts) Find the general solution of L( #„y ) = 9t2 + 12t−1e3t − 15.

SOLUTION:

(a) Check that both functions are solutions:

2
(
e3t
)′′ − 12

(
e3t
)′
+ 18e3t = 18e3t − 36e3t + 18e3t = 0

2
(
te3t
)′′ − 12

(
te3t
)′
+ 18te3t = 2(9t+ 6)e3t − 12(3t+ 1)e3t + 18te3t = 18te3t + 12e3t − 36te3t − 12e3t + 18te3t = 0

or, alternatively, find the roots of the characteristic equation and build the solutions from that:

2r2 − 12r + 8 = 0 =⇒ 2(r2 − 6r + 9) = 0 =⇒ 2(r − 3)2 = 0 =⇒ r = 3 with multiplicity 2

giving solutions as e3t and te3t.

Check that the functions are linearly independent:

W [e3t, te3t] =

∣∣∣∣∣ e
3t te3t

3e3t (3t+ 1)e3t

∣∣∣∣∣ = e6t 6= 0

Since the dimension of the solution space of a second order linear homogeneous differential equation is two and we have two
linearly independent solutions,

{
e3t, te3t

}
is a basis for the solution space of L( #„y ) = 0.



(b) The form of the particular solution is yp = At2 +Bt+ C. Substituting this into the DE yields

2(2A)− 12(2At+B) + 18(At2 +Bt+ C) = 18At2 + (−24A+ 18B)t+ 4A− 12B + 18C = 9t2 − 15

18A = 9 =⇒ A =
1

2

−24A+ 18B = 0 =⇒ −24
(
1

2

)
= −18B =⇒ B =

2

3

4A− 12B + 18C = −15 =⇒ 4

(
1

2

)
− 12

(
2

3

)
+ 15 = −18C =⇒ C = −1

2

Thus yp1
=

1

2
t2 +

2

3
t− 1

2
is a particular solution.

(c) Before proceeding, we put the differential equation into the form y′′ − 6y′ + 9y = 6t−1e6t and let y1 = e3t, y2 = te3t. The
right hand side is f(t) = 6t−1e3t and the particular solution will have the form yp2

= v1y1 + v2y2 with

v1 =

∫
−te3t(6)t−1e3t

e6t
dt = −6t

v2 =

∫
e3t(6)t−1e3t

e6t
dt = 6 ln |t| = 6 ln t since t > 0

so that yp2
= −6te3t + 6te3t ln t = 6te3t(ln t− 1) is a particular solution.

(d) The general solution is y = c1e
3t + c2te

3t + 6te3t (ln t− 1) +
1

2
t2 +

2

3
t − 1

2
= c1e

3t + c̃2te
3t + 6te3t ln t +

1

2
t2 +

2

3
t − 1

2
where c̃2 = c2 − 6.

�

4. [2360/041923 (20 pts)] Use Laplace transforms to find the solution of x′′ + 2x′ + 10x = 10, x(0) = 2, x′(0) = −7. Using any other

method of solution will result in zero points. The following may be helpful:
c

s(s2 + as+ b)
=

c

b

(
1

s
− s+ a

s2 + as+ b

)
SOLUTION:

L {x′′ + 2x′ + 10x = 10}

s2X(s)− sx(0)− x′(0) + 2 [sX(s)− x(0)] + 10X(s) =
10

s(
s2 + 2s+ 10

)
X(s)− 2s− (−7)− 2(2) =

10

s(
s2 + 2s+ 10

)
X(s) =

10

s
+ 2s− 3

X(s) =
10

s(s2 + 2s+ 10)
+

2s− 3

s2 + 2s+ 10

using the given formula for the partial fraction decomposition with a = 2, b = c = 10

X(s) =
10

10

(
1

s
− s+ 2

s2 + 2s+ 10

)
+

2s− 3

s2 + 2s+ 10

X(s) =
1

s
+

s− 5

s2 + 2s+ 10
=

1

s
+

s+ 1− 6

(s+ 1)2 + 9

X(s) =
1

s
+

s+ 1

(s+ 1)2 + 32
− 2

3

(s+ 1)2 + 32

x(t) = L −1
{
1

s

}
+ L −1

{
s+ 1

(s+ 1)2 + 32

}
− 2L −1

{
3

(s+ 1)2 + 32

}
x(t) = 1 + e−t (cos 3t− 2 sin 3t)



�


