1. [2360/021523 (12 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) The operator $\mathrm{L}(\overrightarrow{\mathbf{y}})=y^{\prime \prime}+e^{t^{2}} y^{\prime}+(\cos t) y$ satisfies the two properties of linear operators.
(b) A population of bacteria growing exponentially doubles in population every 10 days. Therefore, the population size is described by the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} t}=10 y$, where $t=1$ corresponds to 1 day.
(c) Let $y^{\prime}=f(y)$, where f is continuous. An $f(y)$ exists such that there are only two equilibrium solutions, both of which are stable.
(d) The equation $y^{\prime}+2 y+1=0$ is a linear, first order, nonhomogeneous, autonomous differential equation.
(e) The differential equation $t^{-3}\left(y^{\prime}\right)^{2}+e^{t} y=\cos (t)$ can be solved via the integrating factor method.
(f) The isoclines of the differential equation $y^{\prime}=t^{2}+1$ are parabolas and all solutions, regardless of the initial condition, are unbounded (approach infinity) as t goes to infinity.

SOLUTION:

(a) TRUE

$$
\begin{aligned}
\mathrm{L}(k \overrightarrow{\mathbf{y}}) & =(k y)^{\prime \prime}+e^{t^{2}}(k y)^{\prime}+(\cos t)(k y) \\
& =k y^{\prime \prime}+k e^{t^{2}} y^{\prime}+k(\cos t) y \\
& =k\left[y^{\prime \prime}+e^{t^{2}} y^{\prime}+(\cos t) y\right] \\
& =k \mathrm{~L}(\overrightarrow{\mathbf{y}}) \\
\mathrm{L}(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}}) & =(x+y)^{\prime \prime}+e^{t^{2}}(x+y)^{\prime}+(\cos t)(x+y) \\
& =x^{\prime \prime}+y^{\prime \prime}+e^{t^{2}} x^{\prime}+e^{t^{2}} y^{\prime}+(\cos t) x+(\cos t) y \\
& =\left[x^{\prime \prime}+e^{t^{2}} x^{\prime}+(\cos t) x\right]+\left[y^{\prime \prime}+e^{t^{2}} y^{\prime}+(\cos t) y\right] \\
& =\mathrm{L}(\overrightarrow{\mathbf{x}})+\mathrm{L}(\overrightarrow{\mathbf{y}})
\end{aligned}
$$

(b) FALSE The correct equation describing this situation is $\frac{\mathrm{d} y}{\mathrm{~d} t}=\left(\frac{\ln 2}{10}\right) y$.
(c) FALSE If there were two equilibrium solutions, both of which were stable, then y^{\prime} would have to take on both negative and positive values between them, an impossibility.
(d) TRUE Rewritten as $y^{\prime}+2 y=-1$ shows that it is nonhomogeneous and rewriting as $y^{\prime}=-2 y-1$ shows that it is in the form $y^{\prime}=f(y)$.
(e) FALSE The equation is nonlinear due to the presence of the $\left(y^{\prime}\right)^{2}$ term and therefore the integrating factor method cannot be used to solve it.
(f) FALSE The isoclines are $t^{2}+1=c$, which are the vertical lines $t= \pm \sqrt{c-1}$. Note that $c \geq 1$. Because of this, $y^{\prime}>0$ everywhere, implying that solutions are increasing functions for all t, or, equivalently, all solutions are unbounded, regardless of the initial condition.
2. [2360/021523 (16 pts)] The following questions are unrelated.
(a) (8 pts) Compute the equilibrium solutions of the differential equation $y^{\prime}=\left(1-y^{2}\right) y$ and classify their stability.
(b) $(8 \mathrm{pts})$ Given the initial value problem

$$
y^{\prime}=(y-t)^{2 / 3}, \quad y\left(t_{0}\right)=y_{0}
$$

for which initial conditions $\left(t_{0}, y_{0}\right)$ are we guaranteed that there exists a unique solution to the initial value problem?

SOLUTION:

(a) Rewrite the equation as $y^{\prime}=(1+y)(1-y) y$ giving the equilibrium solutions as the roots of $(1+y)(1-y) y=0$ which are $y=-1,0,1$. We then have

$$
y^{\prime}\left\{\begin{array}{ll}
>0, & y<-1 \\
<0, & -1<y<0 \\
>0, & 0<y<1 \\
<0, & y>1
\end{array} \Longrightarrow y=0 \text { is unstable and } y= \pm 1\right. \text { are stable }
$$

(b) We have $f(t, y)=(y-t)^{2 / 3}$ which is continuous everywhere and thus for any initial data $\left(t_{0}, y_{0}\right)$. Picard's theorem therefore guarantees the existence of a solution for any initial value problem. However, $f_{y}=\frac{2}{3}(y-t)^{-1 / 3}$ is not defined and therefore not continuous if $y=t$. Thus for any initial data with $t_{0}=y_{0}$ we cannot guarantee that a unique solution exists. For any initial data such that $t_{0} \neq y_{0}$ Picard's theorem does guarantee a unique solution to the initial value problem.
3. $[2360 / 021523$ (15 pts) $]$ Consider the differential equation $y^{\prime}-\sqrt{y}=-e^{-t} \sqrt{y}$.
(a) (3 pts) Find all equilibrium solutions, if any exist.
(b) (12 pts) Find the general solution of the equation, writing your answer in explicit form, that is, $y(t)=\cdots$.

SOLUTION:

(a) Rewriting the DE as $y^{\prime}=\sqrt{y}\left(1-e^{-t}\right)$ indicates that $y=0$ is the only equilibrium solution.
(b) Use separation of variables, assuming $y \neq 0$.

$$
\begin{gathered}
y^{\prime}=\sqrt{y}-e^{-t} \sqrt{y}=\sqrt{y}\left(1-e^{-t}\right) \\
\int y^{-1 / 2} \mathrm{~d} y=\int\left(1-e^{-t}\right) \mathrm{d} t \\
2 y^{1 / 2}=t+e^{-t}+C \\
y(t)=\frac{1}{4}\left(t+e^{-t}+C\right)^{2}
\end{gathered}
$$

4. [2360/021523 (15 pts)] Let $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(\sin x) y=1$, with $-\frac{\pi}{2}<x<\frac{\pi}{2}$. Use the Euler-Lagrange two stage method (variation of parameters) to find the solution of the equation that passes through the point $\left(\frac{\pi}{3}, 0\right)$.

SOLUTION:

Solve the associated homogeneous equation.

$$
\begin{gathered}
\cos x \frac{\mathrm{~d} y_{h}}{\mathrm{~d} x}+(\sin x) y_{h}=0 \\
\int \frac{\mathrm{~d} y_{h}}{y_{h}}=-\int \frac{\sin x}{\cos x} \mathrm{~d} x \quad(u=\cos x, \mathrm{~d} u=-\sin x \mathrm{~d} x) \\
\ln \left|y_{h}\right|=\ln |\cos x|+K \\
\ln \left|\frac{y_{h}}{\cos x}\right|=K \\
\left|\frac{y_{h}}{\cos x}\right|=e^{K} \\
y_{h}=C \cos x
\end{gathered}
$$

Now set $y_{p}=v(x) \cos x$ and substitute into the nonhomogeneous equation.

$$
\begin{gathered}
(\cos x) y_{p}^{\prime}+(\sin x) y_{p}=-v \sin x \cos x+v^{\prime} \cos ^{2} x+v \cos x \sin x=1 \\
v^{\prime}=\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
v(x)=\tan x
\end{gathered}
$$

so we have $y_{p}=\tan x \cos x=\sin x$ and using the Nonhomogeneous Principle, $y=y_{h}+y_{p}=C \cos x+\sin x$. Applying the initial condition $y\left(\frac{\pi}{3}\right)=0$ yields

$$
0=C \cos \frac{\pi}{3}+\sin \frac{\pi}{3}=C\left(\frac{1}{2}\right)+\frac{\sqrt{3}}{2} \Longrightarrow C=-\sqrt{3}
$$

giving the solution to the problem as $y=-\sqrt{3} \cos x+\sin x$.
5. [2360/021523 (12 pts)] A swimming pool with a capacity of 5000 gallons (gal) initially $(t=0)$ contains 1000 gal of fresh water. Water containing $t e^{-t}$ pounds (lb) of chlorine per gallon is entering the pool at a rate of $4 \mathrm{gal} / \mathrm{min}$, and the well mixed chlorinated water is allowed to drain out the bottom of the pool at a rate of $2 \mathrm{gal} / \mathrm{min}$. Let $x(t)$ denote the amount (lb) of chlorine in the pool at any time t.
(a) (10 pts) Write down, but do not solve, the initial value problem that $x(t)$ satisfies.
(b) (2 pts) Without solving the initial value problem from part (a), state the interval over which the solution will be valid based on the physical situation.

SOLUTION:

(a) Since the inflow and outflow differ, we have

$$
\begin{gathered}
\frac{\mathrm{d} V}{\mathrm{~d} t}=\text { flow in }- \text { flow out }=4-2=2, \quad V(0)=1000 \\
\int \mathrm{~d} V=\int 2 \mathrm{~d} t \\
V(t)=2 t+C \\
V(0)=0+C=1000 \Longrightarrow C=1000 \\
V(t)=1000+2 t
\end{gathered}
$$

Then we have

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =\text { mass rate in }- \text { mass rate out } \\
& =t e^{-t}(4)-\frac{x}{1000+2 t}(2) \\
\frac{\mathrm{d} x}{\mathrm{~d} t} & +\frac{x}{500+t}=4 t e^{-t}, \quad x(0)=0
\end{aligned}
$$

where the initial condition comes from the fact that there is no chlorine in the pool at time $t=0$.
(b) The solution will be valid until the pool fills, or $5000=2 t+1000 \Longrightarrow t=2000$ minutes. Solution is valid on the interval $0 \leq t \leq 2000$ or $t \in[0,2000]$.
6. [2360/021523 (14 pts)] Consider the system of differential equations

$$
\begin{aligned}
& x^{\prime}=2 x+x y \\
& y^{\prime}=-y+x^{2} y
\end{aligned}
$$

(a) (3 pts) Find the h nullclines.
(b) (3 pts) Find the v nullclines.
(c) (5 pts) On a single phase plane, plot the h nullclines as solid curves/lines and the v nullclines as dashed curves/lines. Label all intercepts.
(d) (3 pts) Find the equilibrium points, if any exist.
(a) h nullclines are where $y^{\prime}=0$.

$$
-y+x^{2} y=y\left(-1+x^{2}\right)=y(x+1)(x-1)=0 \Longrightarrow y=0, x= \pm 1
$$

(b) v nullclines are where $x^{\prime}=0$.

$$
2 x+x y=x(2+y)=0 \Longrightarrow x=0, y=-2
$$

(c) Solid lines are h nullclines and dashed lines are v nullclines.

(d) Equilibrium points are where the h and v nullclines intersect, or equivalently, where $x^{\prime}=y^{\prime}=0$ simultaneously. These occur at $(0,0),(1,-2),(-1,-2)$.
7. [2360/021523 (16 pts)] The following problems are unrelated.
(a) (8 pts) Find the general solution of the differential equation $(1+x) z^{\prime}+z=1-x^{2}, x>-1$ using the integrating factor method.
(b) (8 pts) If $x^{\prime}+e^{\sin 2 t} x=1$ and $x(\pi / 4)=2$, approximate $x(\pi / 2)$ using one step of Euler's method.

SOLUTION:

(a)

$$
\begin{gathered}
z^{\prime}+\frac{1}{1+x} z=1-x \\
\int \frac{\mathrm{~d} x}{1+x}=\ln |1+x| \Longrightarrow \mu(x)=e^{\ln |1+x|}=1+x \quad \text { since } x>-1 \\
\int[(1+x) z]^{\prime}=\int\left(1-x^{2}\right) \mathrm{d} x \\
(1+x) z=x-\frac{x^{3}}{3}+C \\
z(x)=\frac{x-x^{3} / 3+C}{x+1}
\end{gathered}
$$

(b) Writing the equation as $x^{\prime}=1-e^{\sin 2 t} x$ we have $f(t, x)=1-e^{\sin 2 t} x$. From the given information we have $h=\pi / 4$ so that Euler's method yields

$$
\begin{aligned}
x_{n+1} & =x_{n}+\frac{\pi}{4}\left(1-e^{\sin 2 t_{n}} x_{n}\right) \\
x(\pi / 2) & \approx x_{1}=2+\frac{\pi}{4}\left[1-e^{\sin (2 \pi / 4)}(2)\right]=2+\frac{\pi}{4}(1-2 e)
\end{aligned}
$$

