
APPM 2360 Exam 1 Spring 2023

1. [2360/021523 (12 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.

(a) The operator L( #„y ) = y′′ + et
2

y′ + (cos t) y satisfies the two properties of linear operators.

(b) A population of bacteria growing exponentially doubles in population every 10 days. Therefore, the population size is described

by the differential equation
dy

dt
= 10y, where t = 1 corresponds to 1 day.

(c) Let y′ = f(y), where f is continuous. An f(y) exists such that there are only two equilibrium solutions, both of which are
stable.

(d) The equation y′ + 2y + 1 = 0 is a linear, first order, nonhomogeneous, autonomous differential equation.

(e) The differential equation t−3 (y′)2 + ety = cos(t) can be solved via the integrating factor method.

(f) The isoclines of the differential equation y′ = t2 + 1 are parabolas and all solutions, regardless of the initial condition, are
unbounded (approach infinity) as t goes to infinity.

SOLUTION:

(a) TRUE

L (k #„y ) = (ky)
′′
+ et

2

(ky)
′
+ (cos t) (ky)

= ky′′ + ket
2

y′ + k (cos t) y

= k
[
y′′ + et

2

y′ + (cos t) y
]

= kL ( #„y )

L ( #„x + #„y ) = (x+ y)
′′
+ et

2

(x+ y)
′
+ (cos t) (x+ y)

= x′′ + y′′ + et
2

x′ + et
2

y′ + (cos t)x+ (cos t) y

=
[
x′′ + et

2

x′ + (cos t)x
]
+
[
y′′ + et

2

y′ + (cos t) y
]

= L ( #„x) + L ( #„y )

(b) FALSE The correct equation describing this situation is
dy

dt
=

(
ln 2

10

)
y.

(c) FALSE If there were two equilibrium solutions, both of which were stable, then y′ would have to take on both negative and
positive values between them, an impossibility.

(d) TRUE Rewritten as y′ + 2y = −1 shows that it is nonhomogeneous and rewriting as y′ = −2y − 1 shows that it is in the form
y′ = f(y).

(e) FALSE The equation is nonlinear due to the presence of the (y′)
2 term and therefore the integrating factor method cannot be

used to solve it.

(f) FALSE The isoclines are t2 + 1 = c, which are the vertical lines t = ±
√
c− 1. Note that c ≥ 1. Because of this, y′ > 0

everywhere, implying that solutions are increasing functions for all t, or, equivalently, all solutions are unbounded, regardless of
the initial condition.

�

2. [2360/021523 (16 pts)] The following questions are unrelated.

(a) (8 pts) Compute the equilibrium solutions of the differential equation y′ = (1− y2)y and classify their stability.

(b) (8 pts) Given the initial value problem

y′ = (y − t)2/3, y(t0) = y0,

for which initial conditions (t0, y0) are we guaranteed that there exists a unique solution to the initial value problem?

SOLUTION:



(a) Rewrite the equation as y′ = (1 + y)(1 − y)y giving the equilibrium solutions as the roots of (1 + y)(1 − y)y = 0 which are
y = −1, 0, 1. We then have

y′


> 0, y < −1
< 0, −1 < y < 0

> 0, 0 < y < 1

< 0, y > 1

=⇒ y = 0 is unstable and y = ±1 are stable

(b) We have f(t, y) = (y − t)2/3 which is continuous everywhere and thus for any initial data (t0, y0). Picard’s theorem therefore
guarantees the existence of a solution for any initial value problem. However, fy = 2

3 (y − t)
−1/3 is not defined and therefore

not continuous if y = t. Thus for any initial data with t0 = y0 we cannot guarantee that a unique solution exists. For any initial
data such that t0 6= y0 Picard’s theorem does guarantee a unique solution to the initial value problem.

�

3. [2360/021523 (15 pts)] Consider the differential equation y′ −√y = −e−t√y.

(a) (3 pts) Find all equilibrium solutions, if any exist.

(b) (12 pts) Find the general solution of the equation, writing your answer in explicit form, that is, y(t) = · · · .

SOLUTION:

(a) Rewriting the DE as y′ =
√
y (1− e−t) indicates that y = 0 is the only equilibrium solution.

(b) Use separation of variables, assuming y 6= 0.

y′ =
√
y − e−t√y =

√
y
(
1− e−t

)
∫
y−1/2 dy =

∫ (
1− e−t

)
dt

2y1/2 = t+ e−t + C

y(t) =
1

4

(
t+ e−t + C

)2
�

4. [2360/021523 (15 pts)] Let cosx
dy

dx
+ (sinx)y = 1, with −π

2
< x <

π

2
. Use the Euler-Lagrange two stage method (variation of

parameters) to find the solution of the equation that passes through the point
(π
3
, 0
)

.

SOLUTION:
Solve the associated homogeneous equation.

cosx
dyh
dx

+ (sinx)yh = 0∫
dyh
yh

= −
∫

sinx

cosx
dx (u = cosx, du = − sinxdx)

ln |yh| = ln | cosx|+K

ln
∣∣∣ yh
cosx

∣∣∣ = K∣∣∣ yh
cosx

∣∣∣ = eK

yh = C cosx

Now set yp = v(x) cosx and substitute into the nonhomogeneous equation.

(cosx)y′p + (sinx)yp = −v sinx cosx+ v′ cos2 x+ v cosx sinx = 1

v′ =
1

cos2 x
= sec2 x

v(x) = tanx



so we have yp = tanx cosx = sinx and using the Nonhomogeneous Principle, y = yh + yp = C cosx+ sinx. Applying the initial
condition y

(
π
3

)
= 0 yields

0 = C cos
π

3
+ sin

π

3
= C

(
1

2

)
+

√
3

2
=⇒ C = −

√
3

giving the solution to the problem as y = −
√
3 cosx+ sinx. �

5. [2360/021523 (12 pts)] A swimming pool with a capacity of 5000 gallons (gal) initially (t = 0) contains 1000 gal of fresh water. Water
containing te−t pounds (lb) of chlorine per gallon is entering the pool at a rate of 4 gal/min, and the well mixed chlorinated water is
allowed to drain out the bottom of the pool at a rate of 2 gal/min. Let x(t) denote the amount (lb) of chlorine in the pool at any time t.

(a) (10 pts) Write down, but do not solve, the initial value problem that x(t) satisfies.

(b) (2 pts) Without solving the initial value problem from part (a), state the interval over which the solution will be valid based on the
physical situation.

SOLUTION:

(a) Since the inflow and outflow differ, we have

dV

dt
= flow in− flow out = 4− 2 = 2, V (0) = 1000∫

dV =

∫
2 dt

V (t) = 2t+ C

V (0) = 0 + C = 1000 =⇒ C = 1000

V (t) = 1000 + 2t

Then we have

dx

dt
= mass rate in − mass rate out

= te−t(4)− x

1000 + 2t
(2)

dx

dt
+

x

500 + t
= 4te−t, x(0) = 0

where the initial condition comes from the fact that there is no chlorine in the pool at time t = 0.

(b) The solution will be valid until the pool fills, or 5000 = 2t + 1000 =⇒ t = 2000 minutes. Solution is valid on the interval
0 ≤ t ≤ 2000 or t ∈ [0, 2000].

�

6. [2360/021523 (14 pts)] Consider the system of differential equations

x′ = 2x+ xy

y′ = −y + x2y

(a) (3 pts) Find the h nullclines.

(b) (3 pts) Find the v nullclines.

(c) (5 pts) On a single phase plane, plot the h nullclines as solid curves/lines and the v nullclines as dashed curves/lines. Label all
intercepts.

(d) (3 pts) Find the equilibrium points, if any exist.

SOLUTION:



(a) h nullclines are where y′ = 0.

−y + x2y = y(−1 + x2) = y(x+ 1)(x− 1) = 0 =⇒ y = 0, x = ±1

(b) v nullclines are where x′ = 0.

2x+ xy = x(2 + y) = 0 =⇒ x = 0, y = −2

(c) Solid lines are h nullclines and dashed lines are v nullclines.

−1 1

−2

x

y

(d) Equilibrium points are where the h and v nullclines intersect, or equivalently, where x′ = y′ = 0 simultaneously. These occur
at (0, 0), (1,−2), (−1,−2).

�

7. [2360/021523 (16 pts)] The following problems are unrelated.

(a) (8 pts) Find the general solution of the differential equation (1+ x)z′+ z = 1− x2, x > −1 using the integrating factor method.

(b) (8 pts) If x′ + esin 2tx = 1 and x(π/4) = 2, approximate x(π/2) using one step of Euler’s method.

SOLUTION:

(a)

z′ +
1

1 + x
z = 1− x∫

dx

1 + x
= ln |1 + x| =⇒ µ(x) = eln |1+x| = 1 + x since x > −1∫

[(1 + x)z]
′
=

∫ (
1− x2

)
dx

(1 + x)z = x− x3

3
+ C

z(x) =
x− x3/3 + C

x+ 1

(b) Writing the equation as x′ = 1− esin 2tx we have f(t, x) = 1− esin 2tx. From the given information we have h = π/4 so that
Euler’s method yields

xn+1 = xn +
π

4

(
1− esin 2tnxn

)
x(π/2) ≈ x1 = 2 +

π

4

[
1− esin(2π/4)(2)

]
= 2 +

π

4
(1− 2e)

�


