1. [2360/043022 (20 pts)] Solve the following initial value problem: $y^{\prime \prime}+3 t^{2}=5 \delta(t-2)+6(t-4) \operatorname{step}(t-4), y(0)=2, y^{\prime}(0)=0$.

## SOLUTION:

$$
\begin{gathered}
\mathscr{L}\left\{y^{\prime \prime}+3 t^{2}=5 \delta(t-2)+6(t-4) \operatorname{step}(t-4)\right\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+\frac{6}{s^{3}}=5 e^{-2 s}+\frac{6 e^{-4 s}}{s^{2}} \\
Y(s)=\frac{5 e^{-2 s}}{s^{2}}+\frac{6 e^{-4 s}}{s^{4}}-\frac{6}{s^{5}}+\frac{2}{s} \\
y(t)=\mathscr{L}^{-1}\left\{5 e^{-2 s} \frac{1!}{s^{1+1}}+e^{-4 s} \frac{3!}{s^{3+1}}-\frac{6}{4!} \frac{4!}{s^{4+1}}+\frac{2}{s}\right\} \\
y(t)=5(t-2) \operatorname{step}(t-2)+(t-4)^{3} \operatorname{step}(t-4)-\frac{1}{4} t^{4}+2
\end{gathered}
$$

2. [2360/043022 (15 pts)] Solve the system $\left\{\begin{array}{l}x+2 z=1 \\ y-4 z=1 \\ x+z=2\end{array}\right.$ by using Gauss-Jordan elimination to find the inverse of an appropriate matrix. No credit awarded if any other technique is used (e.g., RREF, Cramer's Rule).

## SOLUTION:

The system can be written in the form $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ as

$$
\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -4 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

so that $\overrightarrow{\mathbf{x}}=\mathbf{A}^{-1} \overrightarrow{\mathbf{b}}$.

$$
\begin{gathered}
{\left[\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -4 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -4 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 0 & 2 \\
0 & 1 & 0 & 4 & 1 & -4 \\
0 & 0 & 1 & 1 & 0 & -1
\end{array}\right]} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 0 & 2 \\
4 & 1 & -4 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
3 \\
-3 \\
-1
\end{array}\right]}
\end{gathered}
$$

3. [2360/043022 (18 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) For invertible matrices $\mathbf{A}, \mathbf{B}$, and $\mathbf{C}$, if $\mathbf{A B}=\mathbf{C A}$, then $|\mathbf{B}|=|\mathbf{C}|$.
(b) The space of all solutions to the differential equation $y^{\prime \prime}-\left(\cos t^{2}\right) y^{\prime}+y-5 t=0$ forms a vector space (usual addition and scalar multiplication are assumed).
(c) $\mathbf{A}$ is a $3 \times 4$ matrix. When the system of linear equations $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is consistent, then we must have infinitely many solutions. Here $\overrightarrow{\mathbf{x}}$ is a $4 \times 1$ column vector and $\overrightarrow{\mathbf{b}}$ is a $3 \times 1$ column vector.
(d) The equilibrium solution $x=1$ of the differential equation $x^{\prime}(t)=x(1-x)$ is unstable.
(e) If $f(t, y)$ is continuous everywhere, Picard's theorem guarantees that the differential equation $y^{\prime}=f(t, y)$ has a unique solution for any initial condition $y\left(t_{0}\right)=y_{0}$.
(f) If 1 is an eigenvalue of a $3 \times 3$ matrix $\mathbf{A}$, then $\mathbf{A}$ must be invertible.
(g) The function $f(t)=\left\{\begin{array}{ll}1 & t<2 \\ e^{t} & 2 \leq t<3 \\ 2 & t \geq 3\end{array}\right.$ can be written as $f(t)=1+\left(e^{t}-1\right)$ step $(t-2)+\left(2-e^{t}\right) \operatorname{step}(t-3)$.
(h) The set of all $2 \times 2$ diagonal matrices is a dimension 4 subspace of $\mathbb{M}_{22}$.
(i) If the functions $\left\{y_{1}(t), y_{2}(t), y_{3}(t)\right\}$ are all solutions to a third order linear homogeneous differential equation and $W\left[y_{1}, y_{2}, y_{3}\right](t) \equiv 0$, then the functions cannot form a basis for the solution solution space.

## SOLUTION:

(a) TRUE Since all of the matrices are invertible, their respective determinants are nonzero. Thus

$$
\mathbf{A B}=\mathbf{C A} \Longrightarrow|\mathbf{A B}|=|\mathbf{C A}| \Longrightarrow|\mathbf{A}||\mathbf{B}|=|\mathbf{C}||\mathbf{A}| \Longrightarrow|\mathbf{A}||\mathbf{B}|=|\mathbf{C}||\mathbf{A}| \Longrightarrow|\mathbf{B}|=|\mathbf{C}|
$$

(b) FALSE The differential equation is nonhomogeneous.
(c) TRUE The system is underdetermined. Underdetermined systems never have unique solutions.
(d) FALSE If $x>1, x^{\prime}<0$. If $x<1, x^{\prime}>0$. The equilibrium solution is stable.
(e) FALSE Uniqueness is guaranteed only if $f_{y}(t, y)$ is continuous in a rectangle surrounding $\left(t_{0}, y_{0}\right)$.
(f) FALSE 0 could be an eigenvalue in which case the matrix would be singular.
(g) TRUE
(h) FALSE The set is a subspace but its dimension is 2 .
(i) TRUE The functions are linearly dependent.
4. [2360/043022 (12 pts)] Two fifty gallon tanks are full of Kool-Aid ${ }^{\circledR}$ solution. Initially, Tank 1 contains 5 kg of dissolved Kool-Aid ${ }^{\circledR}$ powder and Tank 2 has 3 kg of dissolved Kool-Aid ${ }^{\circledR}$ powder in it. The well-stirred solution is pumped between the tanks as shown in the figure below. Construct, but DO NOT SOLVE, a mathematical model for the number of kilograms of Kool-Aid ${ }^{\circledR}$ powder $x_{1}(t)$ and $x_{2}(t)$ at time $t$ in Tanks 1 and 2, respectively. Write your final answer using matrices and vectors.


## SOLUTION:

The initial conditions are $x_{1}(t)=5$ and $x_{2}(t)=3$. Since the net flow into and out of each tank is zero, the volume of solution in the tanks remains constant at 50 gal . Using the relationship rate of change $=$ rate in - rate out we have

$$
\begin{aligned}
& x_{1}^{\prime}(t)=\left(2 \frac{\mathrm{~kg}}{\mathrm{gal}}\right)\left(7 \frac{\mathrm{gal}}{\mathrm{~min}}\right)+\left(\frac{x_{2}}{50} \frac{\mathrm{~kg}}{\mathrm{gal}}\right)\left(1 \frac{\mathrm{gal}}{\mathrm{~min}}\right)-\left(\frac{x_{1}}{50} \frac{\mathrm{~kg}}{\mathrm{gal}}\right)\left(3 \frac{\mathrm{gal}}{\mathrm{~min}}\right)-\left(\frac{x_{1}}{50} \frac{\mathrm{~kg}}{\mathrm{gal}}\right)\left(5 \frac{\mathrm{gal}}{\mathrm{~min}}\right) \\
& x_{2}^{\prime}(t)=\left(\frac{x_{1}}{50} \frac{\mathrm{~kg}}{\mathrm{gal}}\right)\left(5 \frac{\mathrm{gal}}{\mathrm{~min}}\right)-\left(\frac{x_{2}}{50} \frac{\mathrm{~kg}}{\mathrm{gal}}\right)\left(1 \frac{\mathrm{gal}}{\mathrm{~min}}\right)-\left(\frac{x_{2}}{50} \frac{\mathrm{~kg}}{\mathrm{gal}}\right)\left(4 \frac{\mathrm{gal}}{\mathrm{~min}}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-\frac{4}{25} x_{1}(t)+\frac{1}{50} x_{2}(t)+14 \\
& x_{2}^{\prime}(t)=\frac{1}{10} x_{1}(t)-\frac{1}{10} x_{2}(t)
\end{aligned}
$$

Using matrices and vectors,

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{rr}
-\frac{4}{25} & \frac{1}{50} \\
\frac{1}{10} & -\frac{1}{10}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
14 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
$$

5. [2360/043022 ( 15 pts )] Use the integrating factor method to solve the initial value problem $x y^{\prime}+3 y=-4 x^{-4}, y(1)=-4$ on the interval $x>0$.

$$
\begin{gathered}
x y^{\prime}+3 y=-4 x^{-4} \\
y^{\prime}+\frac{3}{x} y=-4 x^{-5} \quad \text { integrating factor } \mu(x)=e^{\int \frac{3}{x} \mathrm{~d} x}=x^{3} \\
\left(x^{3} y\right)^{\prime}=-4 x^{-2} \\
x^{3} y=-4 \int x^{-2} \mathrm{~d} x=4 x^{-1}+C \quad \text { apply initial condition } \\
(1)^{3}(-4)=4(1)^{-1}+C \Longrightarrow C=-8 \\
y(x)=4 x^{-4}-8 x^{-3}=\frac{4}{x^{4}}(1-2 x)
\end{gathered}
$$

6. [2360/043022 (20 pts)] Solve the initial value problem $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0\end{array}\right] \overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}2 \\ 2 \\ 6\end{array}\right]$. Write your final answer as a single vector. SOLUTION:

$$
\left|\begin{array}{ccc}
-\lambda & 0 & 2 \\
0 & 2-\lambda & 0 \\
2 & 0 & -\lambda
\end{array}\right|=\lambda^{2}(2-\lambda)-4(2-\lambda)=(2-\lambda)\left(\lambda^{2}-4\right)=(2-\lambda)(\lambda-2)(\lambda+2)=0 \Longrightarrow
$$

so the eigenvalues are 2 with multiplicity 2 and -2 with multiplicity 1.

$$
\begin{aligned}
& \lambda=-2:\left[\begin{array}{lll|l}
2 & 0 & 2 & 0 \\
0 & 4 & 0 & 0 \\
2 & 0 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow \begin{array}{l}
v_{1}+v_{3}=0 \\
v_{2}=0 \\
v_{3}=r \in \mathbb{R}
\end{array} \Longrightarrow \overrightarrow{\mathbf{v}}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \\
& \lambda=2:\left[\begin{array}{rrr|r}
-2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow \begin{array}{l}
v_{1}-v_{3}=0 \\
v_{2}=r \in \mathbb{R} \\
v_{3}=s \in \mathbb{R}
\end{array} \Longrightarrow \overrightarrow{\mathbf{v}}=r\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \Longrightarrow \overrightarrow{\mathbf{v}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

The general solution is thus

$$
\overrightarrow{\mathbf{x}}(t)=c_{1} e^{-2 t}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c_{3} e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Applying the initial condition gives

$$
c_{1}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right]
$$

so that

$$
\left[\begin{array}{rrr|r}
-1 & 0 & 1 & 2 \\
0 & 1 & 0 & 2 \\
1 & 0 & 1 & 6
\end{array}\right] \sim\left[\begin{array}{rrr|r}
-1 & 0 & 1 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 2 & 8
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 0 & -1 & -2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 4
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

Thus,

$$
\overrightarrow{\mathbf{x}}(t)=2 e^{-2 t}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+2 e^{2 t}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+4 e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 e^{-2 t}+4 e^{2 t} \\
2 e^{2 t} \\
2 e^{-2 t}+4 e^{2 t}
\end{array}\right]
$$

7. [2360/043022 (12 pts)] Convert $t^{2} y^{\prime \prime \prime}-(\cos t) y^{\prime}=2, y(0)=3, y^{\prime}(0)=-1, y^{\prime \prime}(0)=4$ with $t>0$ into a system of first order differential equations. Write your final answer using matrices, if possible.

## SOLUTION:

Let $u_{1}=y, u_{2}=y^{\prime}, u_{3}=y^{\prime \prime}$. Then

$$
\begin{aligned}
& u_{1}^{\prime}=y^{\prime}=u_{2} \\
& u_{2}^{\prime}=y^{\prime \prime}=u_{3} \\
& u_{3}^{\prime}=y^{\prime \prime \prime}=\frac{2}{t^{2}}+\frac{\cos t}{t^{2}} y^{\prime}=\frac{\cos t}{t^{2}} u_{2}+\frac{2}{t^{2}}
\end{aligned}
$$

Since the original equation is linear, we can write this system/initial value problem using matrices as

$$
\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime} \\
u_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & \frac{\cos t}{t^{2}} & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\frac{2}{t^{2}}
\end{array}\right], \overrightarrow{\mathbf{u}}(0)=\left[\begin{array}{r}
3 \\
-1 \\
4
\end{array}\right]
$$

8. [2360/043022 (20 pts)] Consider the linear system of differential equations given by $\overrightarrow{\mathbf{x}}^{\prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$ where $\mathbf{A}=\left[\begin{array}{ll}a-1 & 1 \\ a-2 & 1\end{array}\right](a$ is a real number) and with equilibrium solution $\overrightarrow{\mathbf{x}}_{*}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(a) Is $\overrightarrow{\mathbf{x}}_{*}$ the only possible equilibrium solution? Justify your answer.
(b) For what value(s) of $a$, if any, will the equilibrium solution $\overrightarrow{\mathbf{x}}_{*}$ be a saddle?
(c) For what value(s) of $a$, if any, will the equilibrium solution $\overrightarrow{\mathbf{x}}_{*}$ be unstable?
(d) For what value(s) of $a$, if any, will the equilibrium solution $\overrightarrow{\mathbf{x}}_{*}$ be an attracting node?

## SOLUTION:

Note that $|\mathbf{A}|=a-1-(a-2)=1$ and $\operatorname{Tr} \mathbf{A}=a-1+1=a$
(a) Yes, since $|\mathbf{A}| \neq 0$, the only equilibrium solution is $\overrightarrow{\mathbf{x}}_{*}$.
(b) For a saddle we need $|\mathbf{A}|<0$. No values of $a$ result in a saddle.
(c) To be unstable, since $|\mathbf{A}|>0$ we need $\operatorname{Tr} \mathbf{A}>0 \Longrightarrow a>0$.
(d) To be an attracting node, we need $\operatorname{Tr} \mathbf{A}<0$ and $(\operatorname{Tr} \mathbf{A})^{2}-4|\mathbf{A}|>0 \Longrightarrow a^{2}-4>0 \Longrightarrow|a|>2 \Longrightarrow a>2$ or $a<-2$. For an attracting node, we need $\operatorname{Tr} \mathbf{A}<0$ so $a<-2$.
9. [2360/043022 ( 18 pts )] The following parts of this problem are related.
(a) In your bluebook, write the letters A-D. Next to each letter, write the Roman numeral corresponding to the equation or system depicted in each figure. Each letter corresponds to exactly one Roman numeral.
I. $\begin{array}{r}x^{\prime}=x-2 y \\ y^{\prime}=4 x-y\end{array}$
II. $\begin{aligned} & x^{\prime}=x+2 y \\ & y^{\prime}=-4 x+y\end{aligned}$
III. $y^{\prime}=x+2 y$
IV. $\begin{aligned} & x^{\prime}=x+2 y \\ & y^{\prime}=4 x-y\end{aligned}$
V. $y^{\prime}=x-2 y$
VI. $y^{\prime}=2 x-y$
(b) What do the lines in graph A represent? Be sure to differentiate between solid and dashed in your answer.
(c) What does the line in graph C represent?

## (A)


(B)

(C)

(D)


## Solution:

(a) (A) IV
(B) III
(C) VI
(D) II
(b) The solid line is the $v$ nullcline and the dashed line is the $h$ nullcline.
(c) The line is the isocline depicting where the slope of the solution curve is zero (the solution curve is horizontal)

