- This exam is worth 150 points and has 9 questions.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted. You are allowed one $8.5 " \times 11^{\prime \prime}$ crib sheet with writing on both sides.

At the top of the page containing your answer to problem 1, write the following italicized statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam."

FAILURE TO INCLUDE THIS MAY RESULT IN A PENALTY.

1. $[2360 / 043022(20 \mathrm{pts})]$ Solve the following initial value problem: $y^{\prime \prime}+3 t^{2}=5 \delta(t-2)+6(t-4)$ step $(t-4), y(0)=2, y^{\prime}(0)=0$.
2. [2360/043022 (15 pts)] Solve the system $\left\{\begin{array}{l}x+2 z=1 \\ y-4 z=1 \\ x+z=2\end{array}\right.$ by using Gauss-Jordan elimination to find the inverse of an appropriate matrix.

No credit awarded if any other technique is used (e.g., RREF, Cramer's Rule).
3. [2360/043022 (18 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) For invertible matrices \mathbf{A}, \mathbf{B}, and \mathbf{C}, if $\mathbf{A B}=\mathbf{C A}$, then $|\mathbf{B}|=|\mathbf{C}|$.
(b) The space of all solutions to the differential equation $y^{\prime \prime}-\left(\cos t^{2}\right) y^{\prime}+y-5 t=0$ forms a vector space (usual addition and scalar multiplication are assumed).
(c) \mathbf{A} is a 3×4 matrix. When the system of linear equations $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is consistent, then we must have infinitely many solutions. Here $\overrightarrow{\mathbf{x}}$ is a 4×1 column vector and $\overrightarrow{\mathbf{b}}$ is a 3×1 column vector.
(d) The equilibrium solution $x=1$ of the differential equation $x^{\prime}(t)=x(1-x)$ is unstable.
(e) If $f(t, y)$ is continuous everywhere, Picard's theorem guarantees that the differential equation $y^{\prime}=f(t, y)$ has a unique solution for any initial condition $y\left(t_{0}\right)=y_{0}$.
(f) If 1 is an eigenvalue of a 3×3 matrix \mathbf{A}, then \mathbf{A} must be invertible.
(g) The function $f(t)=\left\{\begin{array}{ll}1 & t<2 \\ e^{t} & 2 \leq t<3 \\ 2 & t \geq 3\end{array}\right.$ can be written as $f(t)=1+\left(e^{t}-1\right) \operatorname{step}(t-2)+\left(2-e^{t}\right) \operatorname{step}(t-3)$.
(h) The set of all 2×2 diagonal matrices is a dimension 4 subspace of \mathbb{M}_{22}.
(i) If the functions $\left\{y_{1}(t), y_{2}(t), y_{3}(t)\right\}$ are all solutions to a third order linear homogeneous differential equation and $W\left[y_{1}, y_{2}, y_{3}\right](t) \equiv 0$, then the functions cannot form a basis for the solution solution space.
4. [2360/043022 (12 pts)] Two fifty gallon tanks are full of Kool-Aid ${ }^{\circledR}$ solution. Initially, Tank 1 contains 5 kg of dissolved Kool-Aid ${ }^{\circledR}$ powder and Tank 2 has 3 kg of dissolved Kool-Aid ${ }^{\circledR}$ powder in it. The well-stirred solution is pumped between the tanks as shown in the figure below. Construct, but DO NOT SOLVE, a mathematical model for the number of kilograms of Kool-Aid ${ }^{\circledR}$ powder $x_{1}(t)$ and $x_{2}(t)$ at time t in Tanks 1 and 2, respectively. Write your final answer using matrices and vectors.

5. [2360/043022 (15 pts)] Use the integrating factor method to solve the initial value problem $x y^{\prime}+3 y=-4 x^{-4}, y(1)=-4$ on the interval $x>0$.
6. [2360/043022 (20 pts)] Solve the initial value problem $\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0\end{array}\right] \overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}2 \\ 2 \\ 6\end{array}\right]$. Write your final answer as a single vector.
7. [2360/043022 (12 pts)] Convert $t^{2} y^{\prime \prime \prime}-(\cos t) y^{\prime}=2, y(0)=3, y^{\prime}(0)=-1, y^{\prime \prime}(0)=4$ with $t>0$ into a system of first order differential equations. Write your final answer using matrices, if possible.
8. [2360/043022 (20 pts)] Consider the linear system of differential equations given by $\overrightarrow{\mathbf{x}}^{\prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$ where $\mathbf{A}=\left[\begin{array}{ll}a-1 & 1 \\ a-2 & 1\end{array}\right](a$ is a real number) and with equilibrium solution $\overrightarrow{\mathbf{x}}_{*}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(a) Is $\overrightarrow{\mathbf{x}}_{*}$ the only possible equilibrium solution? Justify your answer.
(b) For what value(s) of a, if any, will the equilibrium solution $\overrightarrow{\mathbf{x}}_{*}$ be a saddle?
(c) For what value(s) of a, if any, will the equilibrium solution $\overrightarrow{\mathbf{x}}_{*}$ be unstable?
(d) For what value(s) of a, if any, will the equilibrium solution $\overrightarrow{\mathbf{x}}_{*}$ be an attracting node?
9. [2360/043022 (18 pts)] The following parts of this problem are related.
(a) In your bluebook, write the letters A-D. Next to each letter, write the Roman numeral corresponding to the equation or system depicted in each figure. Each letter corresponds to exactly one Roman numeral.
I. $\begin{aligned} & x^{\prime}=x-2 y \\ & y^{\prime}=4 x-y\end{aligned}$
II. $\begin{aligned} & x^{\prime}=x+2 y \\ & y^{\prime}=-4 x+y\end{aligned}$
III. $y^{\prime}=x+2 y$
IV. $\begin{aligned} & x^{\prime}=x+2 y \\ & y^{\prime}=4 x-y\end{aligned}$
V. $y^{\prime}=x-2 y$
VI. $y^{\prime}=2 x-y$
(b) What do the lines in graph A represent? Be sure to differentiate between solid and dashed in your answer.
(c) What does the line in graph C represent?

Short table of Laplace Transforms: $\mathscr{L}\{f(t)\}=F(s) \equiv \int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t$
In this table, a, b, c are real numbers with $c \geq 0$, and $n=0,1,2,3, \ldots$.

$$
\begin{gathered}
\mathscr{L}\left\{t^{n} e^{a t}\right\}=\frac{n!}{(s-a)^{n+1}} \quad \mathscr{L}\left\{e^{a t} \cos b t\right\}=\frac{s-a}{(s-a)^{2}+b^{2}} \quad \mathscr{L}\left\{e^{a t} \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}} \\
\mathscr{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{\mathrm{~d}^{n} F(s)}{\mathrm{d} s^{n}} \quad \mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) \quad \mathscr{L}\{\delta(t-c)\}=e^{-c s} \\
\mathscr{L}\left\{t f^{\prime}(t)\right\}=-F(s)-s \frac{\mathrm{~d} F(s)}{\mathrm{d} s} \quad \mathscr{L}\{f(t-c) \operatorname{step}(t-c)\}=e^{-c s} F(s) \quad \mathscr{L}\{f(t) \operatorname{step}(t-c)\}=e^{-c s} \mathscr{L}\{f(t+c)\} \\
\mathscr{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-s^{n-3} f^{\prime \prime}(0)-\cdots-f^{(n-1)}(0)
\end{gathered}
$$

