1. [2360/030922 (10 pts)] Given the matrices

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 0 \\
3 & 4 \\
-1 & -2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{rrr}
2 & -1 & -3 \\
0 & 1 & 2
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ll}
-1 & 4
\end{array}\right]
$$

write the word TRUE or FALSE as appropriate. No work need be shown, no work will be graded and no partial credit will be given.
(a) $\mathbf{C B}=\left[\begin{array}{r}-2 \\ 5 \\ 11\end{array}\right]$
(b) $\operatorname{Tr}\left(\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}\right)=2$
(c) $\mathbf{A}^{\mathrm{T}} \mathbf{A}=\mathbf{A} \mathbf{A}^{\mathrm{T}}$
(d) $\left|\mathbf{C}^{\mathbf{T}} \mathbf{C}-3 \mathbf{I}\right|=-10$
(e) $\mathbf{A B}-\mathbf{A}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}$ is not defined

Solution:

(a) FALSE $\mathbf{C B}=\left[\begin{array}{ll}-1 & 4\end{array}\right]\left[\begin{array}{rrr}2 & -1 & -3 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{lll}-2 & 5 & 11\end{array}\right]$
(b) TRUE $\operatorname{Tr}\left(\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}\right)=\operatorname{Tr}\left(\left[\begin{array}{rr}2 & 0 \\ -1 & 1 \\ -3 & 2\end{array}\right]\left[\begin{array}{lll}1 & 3 & -1 \\ 0 & 4 & -2\end{array}\right]\right)=\operatorname{Tr}\left[\begin{array}{rrr}2 & 6 & -2 \\ -1 & 1 & -1 \\ -3 & -1 & -1\end{array}\right]=2+1-1=2$
(c) FALSE $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ is $(2 \times 3)(3 \times 2)=2 \times 2$ whereas $\mathbf{A} \mathbf{A}^{\mathrm{T}}$ is $(3 \times 2)(2 \times 3)=3 \times 3$ so they cannot be equal
(d) FALSE $\left|\mathbf{C}^{\mathrm{T}} \mathbf{C}-3 \mathbf{I}\right|=\left|\left[\begin{array}{r}-1 \\ 4\end{array}\right]\left[\begin{array}{ll}-1 & 4\end{array}\right]-3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right|=\left|\left[\begin{array}{rr}1 & -4 \\ -4 & 16\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\right|=\left|\begin{array}{ll}-2 & -4 \\ -4 & 13\end{array}\right|=-42$
(e) TRUE AB is $(3 \times 2)(2 \times 3)=3 \times 3$ whilst $\mathbf{A}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}$ is $(2 \times 3)(3 \times 2)=2 \times 2$ so the subtraction is not defined
2. $\left[2360 / 030922\right.$ (12 pts)] Let $\mathbf{A}=\left[\begin{array}{lll}0 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 0\end{array}\right]$.
(a) (4 pts) Find the eigenvalues of \mathbf{A} and state the multiplicity (also known as the algebraic multiplicity) of each.
(b) (8 pts) Find the dimension of and a basis for the eigenspace associated with the eigenvalue whose (algebraic) multiplicity is greater than 1 .

Solution:

(a)

$$
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{ccc}
-\lambda & 0 & 3 \\
0 & 3-\lambda & 0 \\
3 & 0 & -\lambda
\end{array}\right|=(3-\lambda)(-1)^{2+2}\left|\begin{array}{cc}
-\lambda & 3 \\
3 & -\lambda
\end{array}\right|=(3-\lambda)\left(\lambda^{2}-9\right)=-(\lambda-3)^{2}(\lambda+3)=0
$$

Eigenvalues are $\lambda=-3$ with algebraic multiplicity 1 and $\lambda=3$ with algebraic multiplicity 2 .
(b) We need to solve the system $(\mathbf{A}-3 \mathbf{I}) \overrightarrow{\mathrm{v}}=\mathbf{0}$.

$$
\left[\begin{array}{rrr|r}
-3 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & -3 & 0
\end{array}\right] \xrightarrow{\operatorname{RREF}}\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow \overrightarrow{\mathbf{v}}=\left[\begin{array}{l}
s \\
t \\
s
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] s, t \in \mathbb{R}
$$

A basis for the eigenspace is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ with a dimension of 2 .
3. [2360/030922 (14 pts)] Let $\overrightarrow{\mathbf{p}}_{1}=1+x^{2}, \overrightarrow{\mathbf{p}}_{2}=x-x^{2}, \overrightarrow{\mathbf{p}}_{3}=2+2 x+4 x^{2}$. Show that $\overrightarrow{\mathbf{p}}=3+4 x-2 x^{2}$ is in span $\left\{\overrightarrow{\mathbf{p}}_{1}, \overrightarrow{\mathbf{p}}_{2}, \overrightarrow{\mathbf{p}}_{3}\right\}$ by writing $\overrightarrow{\mathbf{p}}$ as a linear combination of $\overrightarrow{\mathbf{p}}_{1}, \overrightarrow{\mathbf{p}}_{2}, \overrightarrow{\mathbf{p}}_{3}$. Use Cramer's Rule and cofactor expansion to solve an appropriate linear system.

Solution:

We need to find constants c_{1}, c_{2}, c_{3} such that $c_{1} \overrightarrow{\mathbf{p}}_{1}+c_{2} \overrightarrow{\mathbf{p}}_{2}+c_{3} \overrightarrow{\mathbf{p}}_{3}=\overrightarrow{\mathbf{p}}$ or

$$
c_{1}\left(1+x^{2}\right)+c_{2}\left(x-x^{2}\right)+c_{3}\left(2+2 x+4 x^{2}\right)=3+4 x-2 x^{2}
$$

Equating coefficients on each side yields the linear system

$$
\begin{aligned}
& 1 c_{1}+0 c_{2}+2 c_{3}=3 \\
& 0 c_{1}+1 c_{2}+2 c_{3}=4 \\
& 1 c_{1}-1 c_{2}+4 c_{3}=-2
\end{aligned}
$$

or written using matrices as $\mathbf{A} \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}}$

$$
\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
4 \\
-2
\end{array}\right]
$$

Cramer's Rule gives:

$$
\begin{aligned}
& c_{1}=\frac{\left|\begin{array}{rrr}
3 & 0 & 2 \\
4 & 1 & 2 \\
-2 & -1 & 4
\end{array}\right|}{\left|\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & -1 & 4
\end{array}\right|}=\frac{3(-1)^{1+1}\left|\begin{array}{rr}
1 & 2 \\
-1 & 4
\end{array}\right|+2(-1)^{1+3}\left|\begin{array}{rr}
4 & 1 \\
-2 & -1
\end{array}\right|}{1(-1)^{1+1}\left|\begin{array}{rr}
1 & 2 \\
-1 & 4
\end{array}\right|+1(-1)^{3+1}\left|\begin{array}{ll}
0 & 2 \\
1 & 2
\end{array}\right|}=\frac{14}{4}=\frac{7}{2} \\
& c_{2}=\frac{\left|\begin{array}{rrr}
1 & 3 & 2 \\
0 & 4 & 2 \\
1 & -2 & 4
\end{array}\right|}{4}=\frac{1(-1)^{1+1}\left|\begin{array}{rr}
4 & 2 \\
-2 & 4
\end{array}\right|+1(-1)^{3+1}\left|\begin{array}{ll}
3 & 2 \\
4 & 2
\end{array}\right|}{4}=\frac{18}{4}=\frac{9}{2} \\
& c_{3}=\frac{\left|\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & 4 \\
1 & -1 & -2
\end{array}\right|}{4}=\frac{1(-1)^{1+1}\left|\begin{array}{rr}
1 & 4 \\
-1 & -2
\end{array}\right|+1(-1)^{3+1}\left|\begin{array}{ll}
0 & 3 \\
1 & 4
\end{array}\right|}{4}=-\frac{1}{4}
\end{aligned}
$$

Thus, $\overrightarrow{\mathbf{p}}=\frac{7}{2} \overrightarrow{\mathbf{p}}_{1}+\frac{9}{2} \overrightarrow{\mathbf{p}}_{2}-\frac{1}{4} \overrightarrow{\mathbf{p}}_{3}$.
4. [2360/030922 (14 pts)] Let $\mathbf{A}=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$. NO credit will be given if Gauss-Jordan elimination is used.
(a) (5 pts) Using only matrix multiplication, verify that $\mathbf{B}=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 0 & -2\end{array}\right]$ is the inverse of \mathbf{A}.
(b) (9 pts) Using only matrix multiplication and properties of the matrix inverse and transpose, solve $\mathbf{A}^{\mathrm{T}} \mathbf{A} \overrightarrow{\mathbf{x}}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$.

SOLUTION:

(a)

$$
\mathbf{A B}=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 0 \\
3 & 0 & -2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{I} \quad \mathbf{O r} \quad \mathbf{B A}=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 0 \\
3 & 0 & -2
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{I}
$$

(b)

$$
\begin{aligned}
\mathbf{A}^{\mathrm{T}} \mathbf{A} \overrightarrow{\mathbf{x}} & =\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \\
\left(\mathbf{A}^{\mathrm{T}}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{A} \overrightarrow{\mathbf{x}} & =\left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \quad \text { Note: }\left(\mathbf{A}^{\mathrm{T}}\right)^{-1} \mathbf{A}^{\mathrm{T}}=\mathbf{I} \text { and } \mathbf{I} \mathbf{A}=\mathbf{A} \\
\mathbf{A} \overrightarrow{\mathbf{x}} & =\left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \\
\mathbf{A}^{-1} \mathbf{A} \overrightarrow{\mathbf{x}} & =\mathbf{A}^{-1}\left(\mathbf{A}^{\mathrm{T}}\right)^{-1}\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \quad \text { Note: } \mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \text { and } \mathbf{I} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}} \\
\overrightarrow{\mathbf{x}} & =\mathbf{A}^{-1}\left(\mathbf{A}^{-1}\right)^{\mathrm{T}}\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \quad \mathbf{N o t e}:\left(\mathbf{A}^{\mathrm{T}}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\mathrm{T}} \\
\overrightarrow{\mathbf{x}} & =\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 0 \\
3 & 0 & -2
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & 1 \\
1 & 0 \\
3 \\
-2
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \\
\overrightarrow{\mathbf{x}} & =\left[\begin{array}{rrr}
2 & 0 & -5 \\
0 & 1 & 0 \\
-5 & 0 & 13
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
7 \\
2 \\
-18
\end{array}\right]
\end{aligned}
$$

5. [2360/030922 (12 pts)] Determine if each of the following sets of vectors forms a basis for \mathbb{R}^{3}. Justify your answers.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}-3 \\ 8 \\ -2\end{array}\right]\right\}$

SOLUTION:

Note that the dimension of \mathbb{R}^{3} is 3 so a basis consists of 3 linearly independent vectors.
(a) The set contains only 2 vectors and thus cannot form a basis for \mathbb{R}^{3} regardless of the linear dependence or independence of the vectors in the set.
(b) Three vectors in \mathbb{R}^{3} can potentially be a basis if they are linearly independent. To check for this, we need to see if the only solution to

$$
c_{1}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{r}
-3 \\
8 \\
-2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow\left[\begin{array}{rrr}
1 & 3 & -3 \\
2 & -1 & 8 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is the trivial solution. The determinant of the coefficient matrix is

$$
\left|\begin{array}{rrr}
1 & 3 & -3 \\
2 & -1 & 8 \\
0 & 1 & -2
\end{array}\right|=1(-1)^{1+1}\left|\begin{array}{rr}
-1 & 8 \\
1 & -2
\end{array}\right|+2(-1)^{2+1}\left|\begin{array}{ll}
3 & -3 \\
1 & -2
\end{array}\right|=1(1)(-6)+2(-1)(-3)=0
$$

implying that the system has nontrivial solutions, further implying that the vectors are linearly dependent and thus cannot form a basis for \mathbb{R}^{3}.
6. [2360/030922 (24 pts)] The following parts are unrelated.
(a) (12 pts) Find the RREF of $\mathbf{A}=\left[\begin{array}{rrrr}1 & 3 & 1 & 9 \\ 1 & 1 & -1 & 1 \\ 3 & 11 & 5 & 35\end{array}\right]$.
(b) (12 pts) We need to solve the system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$. After a number of elementary row operations, the augmented matrix for the system is

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & 0 & 0 & 3 & 5 \\
0 & 1 & 3 & 0 & -2 & 4 \\
0 & 0 & 0 & 1 & -2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

i. (10 pts) Use this and the Nonhomogeneous Principle to find the solution to the original system.
ii. (2 pts) Find the dimension of the solution space of the original associated homogeneous system, $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$. Hint: You have the information you need from part (i); very little additional work is required.

SOLUTION:

(a)
(b) i. Pivot columns correspond to x_{1}, x_{2}, x_{4} so these are basic variables with x_{3} and x_{5}, corresponding to the nonpivot columns, being free variables. Setting $x_{3}=s$ and $x_{5}=t$, solutions have the form

$$
\begin{aligned}
& \qquad \begin{array}{l}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5-3 t \\
4-3 s+2 t \\
s \\
-1+2 t \\
t
\end{array}\right]=\left[\begin{array}{r}
5 \\
4 \\
0 \\
-1 \\
0
\end{array}\right]+s\left[\begin{array}{r}
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-3 \\
2 \\
0 \\
2 \\
1
\end{array}\right] \text { where } s, t \in \mathbb{R}} \\
\\
=\overrightarrow{\mathbf{x}}_{p}+\overrightarrow{\mathbf{x}}_{h}
\end{array} \\
& \text { ii. A basis for the solution space of the associated homogeneous system is }\left\{\left[\begin{array}{r}
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
2 \\
0 \\
2 \\
1
\end{array}\right]\right\}, \text { containing two linearly inde- }
\end{aligned}
$$ pendent vectors so its dimension is 2 .

7. [2360/030922 (14 pts)] Determine if the subsets, \mathbb{W}, are subspaces of the given vector spaces, \mathbb{V}.
(a) (7 pts) $\mathbb{V}=\mathbb{M}_{22} ; \mathbb{W}=\left\{\mathbf{A} \in \mathbb{M}_{22}, \mid \mathbf{A}^{\mathrm{T}}=-\mathbf{A}\right\}$, the set of all matrices of the form $\left[\begin{array}{rr}0 & k \\ -k & 0\end{array}\right]$ where k is a real number.
(b) (7 pts) $\mathbb{V}=\mathbb{R}^{3} ; \mathbb{W}=\left\{\overrightarrow{\mathbf{v}} \in \mathbb{R}^{3} \left\lvert\, \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}p+q \\ r \\ s\end{array}\right]\right.\right.$ where $p, q, r, s \in \mathbb{R}$ and $\left.s \geq 0\right\}$

SOLUTION:

(a) Clearly $\overrightarrow{\mathbf{0}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in \mathbb{W}$. Let $\overrightarrow{\mathbf{u}}=\left[\begin{array}{rr}0 & u \\ -u & 0\end{array}\right] \in \mathbb{W}$ and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{rr}0 & v \\ -v & 0\end{array}\right] \in \mathbb{W}$ and $p, q \in \mathbb{R}$. Then $p \overrightarrow{\mathbf{u}}+q \overrightarrow{\mathbf{v}}=p\left[\begin{array}{rr}0 & u \\ -u & 0\end{array}\right]+q\left[\begin{array}{rr}0 & v \\ -v & 0\end{array}\right]=\left[\begin{array}{rr}0 & p u \\ -p u & 0\end{array}\right]+\left[\begin{array}{rr}0 & q v \\ -q v & 0\end{array}\right]=\left[\begin{array}{cc}0 & p u+q v \\ -p u-q v & 0\end{array}\right]=\left[\begin{array}{cc}0 & p u+q v \\ -(p u+q v) & 0\end{array}\right] \in \mathbb{W}$ since

$$
\left[\begin{array}{cc}
0 & p u+q v \\
-(p u+q v) & 0
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}
0 & -(p u+q v) \\
p u+q v & 0
\end{array}\right]=-\left[\begin{array}{cc}
0 & p u+q v \\
-(p u+q v) & 0
\end{array}\right]
$$

The set is closed under linear combinations and thus is a subspace.
Alternatively, let $\mathbf{A}, \mathbf{B} \in \mathbb{W}$ and $\alpha, \beta \in \mathbb{R}$. Let $\mathbf{C}=\alpha \mathbf{A}+\beta \mathbf{B}$. Then

$$
\mathbf{C}^{\mathrm{T}}=(\alpha \mathbf{A}+\beta \mathbf{B})^{\mathrm{T}}=\alpha \mathbf{A}^{\mathrm{T}}+\beta \mathbf{B}^{\mathrm{T}}=-\alpha \mathbf{A}-\beta \mathbf{B}=-(\alpha \mathbf{A}+\beta \mathbf{B})=-\mathbf{C}
$$

Therefore $\mathbf{C} \in \mathbb{W}$, so by the Vector Subspace Theorem, \mathbb{W} is a subspace of \mathbb{V}.
(b) Let $\overrightarrow{\mathbf{v}}=\left[\begin{array}{c}p+q \\ r \\ s\end{array}\right] \in \mathbb{W}$ with $s>0$. Then $-1 \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}-p-q \\ -r \\ -s\end{array}\right] \notin \mathbb{W}$ since $-s<0$. This implies that \mathbb{W} is not closed under scalar multiplication and thus is not a subspace.

