- This exam is worth 100 points and has 7 questions.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted. You are allowed one $8.5 " \times 11$ " crib sheet with writing on one side.

At the top of the page containing your answer to problem 1, write the following italicized statement and sign your name to it:
"I will abide by the CU Boulder Honor Code on this exam." Failure to include this may result in a penalty.

1. [2360/030922 (10 pts)] Given the matrices

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 0 \\
3 & 4 \\
-1 & -2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{rrr}
2 & -1 & -3 \\
0 & 1 & 2
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ll}
-1 & 4
\end{array}\right]
$$

write the word TRUE or FALSE as appropriate. No work need be shown, no work will be graded and no partial credit will be given.
(a) $\mathbf{C B}=\left[\begin{array}{r}-2 \\ 5 \\ 11\end{array}\right]$
(b) $\operatorname{Tr}\left(\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}\right)=2$
(c) $\mathbf{A}^{\mathrm{T}} \mathbf{A}=\mathbf{A} \mathbf{A}^{\mathrm{T}}$
(d) $\left|\mathbf{C}^{\mathrm{T}} \mathbf{C}-3 \mathbf{I}\right|=-10$
(e) $\mathbf{A B}-\mathbf{A}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}$ is not defined
2. [2360/030922 (12 pts)] Let $\mathbf{A}=\left[\begin{array}{lll}0 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 0\end{array}\right]$.
(a) (4 pts) Find the eigenvalues of \mathbf{A} and state the multiplicity (also known as the algebraic multiplicity) of each.
(b) (8 pts) Find the dimension of and a basis for the eigenspace associated with the eigenvalue whose (algebraic) multiplicity is greater than 1 .
3. [2360/030922 (14 pts)] Let $\overrightarrow{\mathbf{p}}_{1}=1+x^{2}, \overrightarrow{\mathbf{p}}_{2}=x-x^{2}, \overrightarrow{\mathbf{p}}_{3}=2+2 x+4 x^{2}$. Show that $\overrightarrow{\mathbf{p}}=3+4 x-2 x^{2}$ is in span $\left\{\overrightarrow{\mathbf{p}}_{1}, \overrightarrow{\mathbf{p}}_{2}, \overrightarrow{\mathbf{p}}_{3}\right\}$ by writing $\overrightarrow{\mathbf{p}}$ as a linear combination of $\overrightarrow{\mathbf{p}}_{1}, \overrightarrow{\mathbf{p}}_{2}, \overrightarrow{\mathbf{p}}_{3}$. Use Cramer's Rule and cofactor expansion to solve an appropriate linear system.
4. [2360/030922 (14 pts)] Let $\mathbf{A}=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$. NO credit will be given if Gauss-Jordan elimination is used.
(a) (5 pts) Using only matrix multiplication, verify that $\mathbf{B}=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 0 & -2\end{array}\right]$ is the inverse of \mathbf{A}.
(b) (9 pts) Using only matrix multiplication and properties of the matrix inverse and transpose, solve $\mathbf{A}^{\mathrm{T}} \mathbf{A} \overrightarrow{\mathbf{x}}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$.
5. [2360/030922 (12 pts)] Determine if each of the following sets of vectors forms a basis for \mathbb{R}^{3}. Justify your answers.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}-3 \\ 8 \\ -2\end{array}\right]\right\}$
6. [2360/030922 (24 pts)] The following parts are unrelated.
(a) (12 pts) Find the RREF of $\mathbf{A}=\left[\begin{array}{rrrr}1 & 3 & 1 & 9 \\ 1 & 1 & -1 & 1 \\ 3 & 11 & 5 & 35\end{array}\right]$.
(b) (12 pts) We need to solve the system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$. After a number of elementary row operations, the augmented matrix for the system is

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & 0 & 0 & 3 & 5 \\
0 & 1 & 3 & 0 & -2 & 4 \\
0 & 0 & 0 & 1 & -2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

i. (10 pts) Use this and the Nonhomogeneous Principle to find the solution to the original system.
ii. (2 pts) Find the dimension of the solution space of the original associated homogeneous system, $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$. Hint: You have the information you need from part (i); very little additional work is required.
7. [2360/030922 (14 pts)] Determine if the subsets, \mathbb{W}, are subspaces of the given vector spaces, \mathbb{V}.
(a) (7 pts) $\mathbb{V}=\mathbb{M}_{22} ; \mathbb{W}=\left\{\mathbf{A} \in \mathbb{M}_{22}, \mid \mathbf{A}^{T}=-\mathbf{A}\right\}$, the set of all matrices of the form $\left[\begin{array}{rr}0 & k \\ -k & 0\end{array}\right]$ where k is a real number.
(b) (7 pts) $\mathbb{V}=\mathbb{R}^{3} ; \mathbb{W}=\left\{\overrightarrow{\mathbf{v}} \in \mathbb{R}^{3} \left\lvert\, \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}p+q \\ r \\ s\end{array}\right]\right.\right.$ where $p, q, r, s \in \mathbb{R}$ and $\left.s \geq 0\right\}$

