- 1. [2360/102324 (10 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
 - (a) If A is 2×3 and B is 3×4 , then $(AB)^{T}$ is 2×4 .
 - (b) Given a vector space \mathbb{V} , any set of vectors in \mathbb{V} containing $\vec{0}$ is linearly dependent.
 - (c) If G is an $n \times n$ matrix and m is a positive integer, then $|\mathbf{G}^m| = |\mathbf{G}|^m$.
 - (d) Cramer's Rule can be used to solve $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ if \mathbf{A} is 5×5 and rank $\mathbf{A} = 4$
 - (e) If A is a 10×10 matrix with $|\mathbf{A}| = 2$ and B is the matrix obtained by multiplying row 4 of A by 4, then $|\mathbf{B}| = 8$.

SOLUTION:

- (a) **FALSE** $(\mathbf{AB})^{\mathrm{T}}$ is 4×2 .
- (b) **TRUE** $c_1 \vec{\mathbf{v}}_1 + c_2 \vec{\mathbf{v}}_2 + c_3 \vec{\mathbf{0}} + \dots + c_n \vec{\mathbf{v}}_n = \vec{\mathbf{0}}$ has nontrivial solutions (c_3 can be any real number).
- (c) **TRUE** $|\mathbf{G}^m| = \underbrace{|(\mathbf{G})(\mathbf{G})\cdots(\mathbf{G})|}_{m \text{ factors}} = \underbrace{|\mathbf{G}||\mathbf{G}|\cdots|\mathbf{G}|}_{m \text{ factors}} = |\mathbf{G}|^m$
- (d) FALSE Since rank A < 5, |A| = 0 and Cramer's Rule cannot be used.
- (e) **TRUE** Multiplying a row of a matrix by a nonzero constant multiplies the determinant by that nonzero constant.
- 2. [2360/102324 (14 pts)] Use Gauss-Jordan row reduction to find the inverse of an appropriate matrix and use that inverse matrix to find the solution of

$$\begin{array}{rcl} x_1 + x_2 & = & 1 \\ x_1 + x_2 + x_3 & = & -2 \\ & x_2 + x_3 & = & -3 \end{array}$$

SOLUTION:

$$\begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 0 \\ 0 & 1 & 0 & | & 1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 0 & 1 & -1 \\ 0 & 1 & 0 & | & 1 & -1 & 1 \\ 0 & 0 & 1 & | & -1 & 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$

- 3. [2360/102324 (19 pts)] The following problems are not related.
 - (a) (7 pts) What does the Wronskian tell you about the linear independence of the functions $\{x, 1 + x, 2 + 3x\}$ on the real line?
 - (b) (12 pts) Determine which of the following sets of vectors form a basis for the given vector space, V. Justify your answers.

i. (4 pts)
$$\mathbb{V} = \mathbb{R}^2$$
; $\left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix}, \begin{bmatrix} 4\\3 \end{bmatrix} \right\}$
ii. (4 pts) $\mathbb{V} = \mathbb{R}^3$; $\left\{ \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-2\\3 \end{bmatrix}, \begin{bmatrix} 4\\1\\1 \end{bmatrix} \right\}$

iii. (4 pts) $\mathbb{V} = \mathbb{P}_3$; any set of 3 linearly independent third degree polynomials

SOLUTION:

(a)

$$W(x) = \begin{vmatrix} x & 1+x & 2+3x \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

Since $W(x) \equiv 0$, we can conclude nothing about the linear independence of the functions.

- (b) i. No. Justification (1): The set contains 3 vectors in a vector space of dimension 2 (too many). Justification (2): The vectors are linearly dependent: $3\begin{bmatrix}0\\1\end{bmatrix} + 2\begin{bmatrix}2\\0\end{bmatrix} = \begin{bmatrix}4\\3\end{bmatrix}$
 - ii. Yes. There are three linearly independent vectors in a vector space of dimension 3 so they span the vector space.

$$\begin{vmatrix} 2 & 0 & 4 \\ 0 & -2 & 1 \\ 1 & 3 & 1 \end{vmatrix} = 2(-1)^{1+1} \begin{vmatrix} -2 & 1 \\ 3 & 1 \end{vmatrix} + 4(-1)^{1+3} \begin{vmatrix} 0 & -2 \\ 1 & 3 \end{vmatrix} = 2(-5) + 4(2) = -2 \neq 0$$

iii. No. There are only 3 vectors in a vector space of dimension 4 (too few); they cannot span the space

4. [2360/102324 (13 pts)] Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 8 & 10 \\ -3 & -7 & -5 \end{bmatrix}$.

o 1

- (a) (10 pts) For what value(s) of k is $\vec{\mathbf{b}} = \begin{bmatrix} -1 & k & 1 \end{bmatrix}^{\mathrm{T}} \in \mathrm{Col} \mathbf{A}$?
- (b) (3 pts) For what value(s) of k is the system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ inconsistent?

SOLUTION:

(a)

Γ	1	2	1	-1]]	1	2	1	-1		1	2	1	-1		1	2	1	-1
	2	8	10	k	\rightarrow	0	4	8	k+2	\rightarrow	0	1	2	2	\rightarrow	0	1	2	2
L	-3	-7	-5	1		0	-1	-2	-2		0	4	8	k+2		0	0	0	k-6

 $\vec{\mathbf{b}}$ will be in the column space of \mathbf{A} if k = 6.

- (b) From part (a), the system will be inconsistent if $k \neq 6$.
- 5. [2360/102324 (20 pts)] Consider the following augmented matrix of the linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$:

- (a) (2 pts) Is the system overdetermined, underdetermined or neither?
- (b) (10 pts) Find the general solution, that is, solve the system.
- (c) (8 pts) Find a basis for the solution space of the associated homogeneous system and find the dimension of that solution space. Your work from part (b) may prove beneficial.

SOLUTION:

(a) Since there are more equations (4) than variables (3), the system is overdetermined.

(b)

$$\begin{bmatrix} 1 & 3 & 1 & | & -1 \\ -2 & -5 & -3 & | & -1 \\ 5 & 16 & 4 & | & -8 \\ 0 & -1 & 1 & | & 3 \end{bmatrix} \xrightarrow{R_2^* = 2R_1 + R_2}_{R_3^* = -5R_1 + R_3} \begin{bmatrix} 1 & 3 & 1 & | & -1 \\ 0 & 1 & -1 & | & -3 \\ 0 & 1 & -1 & | & -3 \\ 0 & -1 & 1 & | & 3 \end{bmatrix} \xrightarrow{R_1^* = -3R_2 + R_1}_{R_3^* = -1R_2 + R_3} \begin{bmatrix} 1 & 0 & 4 & | & 8 \\ 0 & 1 & -1 & | & -3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

 x_3 is a free variable, which we can set to $t \in \mathbb{R}$. Then $x_1 = 8 - 4t, x_2 = -3 + t$ and $\vec{\mathbf{x}} = \begin{bmatrix} 8 - 4t \\ -3 + t \\ t \end{bmatrix}, t \in \mathbb{R}$ is the general solution.

- (c) The solution to the associated homogeneous system is $\vec{\mathbf{x}} = \begin{bmatrix} -4t \\ t \\ t \end{bmatrix}$, $t \in \mathbb{R} = \operatorname{span} \left\{ \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix} \right\}$. A basis is thus $\left\{ \begin{bmatrix} -4 \\ 1 \\ 1 \end{bmatrix} \right\}$ having a dimension of one.
- 6. [2360/102324 (12 pts)] Let $\mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) (6 pts) Find the eigenvalues of **B** and state their algebraic multiplicity.
 - (b) (6 pts) Find a basis for the eigenspace associated with the largest eigenvalue you found in part (a). What is the geometric multiplicity of this largest eigenvalue?

SOLUTION:

(a)

$$\begin{vmatrix} 1-\lambda & 1 & 0\\ 1 & 1-\lambda & 0\\ 0 & 1 & 1-\lambda \end{vmatrix} = (1-\lambda)(-1)^{3+3} \begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}$$
$$= (1-\lambda)\left[(1-\lambda)^2 - 1\right] = (1-\lambda)(1-2\lambda+\lambda^2-1) = (1-\lambda)(\lambda)(-2+\lambda) = 0$$

The eigenvalues are $\lambda = 0, 1, 2$, each having an algebraic multiplicity of 1.

(b) We need to solve the system $(\mathbf{A} - 2\mathbf{I})\vec{\mathbf{v}} = \vec{\mathbf{0}}$.

$$\begin{bmatrix} -1 & 1 & 0 & | & 0 \\ 1 & -1 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
basis for the eigenspace is
$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
. The geometric multiplicity of $\lambda = 2$ is 1, the dimension of its eigenspace.

- 7. [2360/102324 (12 pts)] Determine if the following subsets, W, are subspaces of the given vector space, V. Justify your answer.
 - (a) (6 pts) $\mathbb{V} = \mathbb{R}^2$, \mathbb{W} is the set of vectors of the form $\begin{bmatrix} a \\ a^2 \end{bmatrix}$ where *a* is a real number.
 - (b) (6 pts) $\mathbb{V} = \mathbb{M}_{22}$, \mathbb{W} is the set of 2×2 matrices for which the entries in each column sum to zero.

SOLUTION:

A

(a) No. Let
$$\vec{\mathbf{u}} = \begin{bmatrix} a \\ a^2 \end{bmatrix}, \vec{\mathbf{v}} = \begin{bmatrix} b \\ b^2 \end{bmatrix} \in \mathbb{W} \text{ and } p, q \in \mathbb{R}.$$
 Then
 $p\vec{\mathbf{u}} + q\vec{\mathbf{v}} = p\begin{bmatrix} a \\ a^2 \end{bmatrix} + q\begin{bmatrix} b \\ b^2 \end{bmatrix} = \begin{bmatrix} pa + qb \\ pa^2 + qb^2 \end{bmatrix} \notin \mathbb{W} \text{ since } \begin{bmatrix} pa + qb \\ pa^2 + qb^2 \end{bmatrix} \neq \begin{bmatrix} pa + qb \\ (pa + qb)^2 \end{bmatrix}$

W is not closed. You can also find specific counterexamples showing the failure of either of the closure properties individually.

(b) Yes.
$$\vec{\mathbf{u}} = \begin{bmatrix} a & b \\ -a & -b \end{bmatrix}, \vec{\mathbf{v}} = \begin{bmatrix} c & d \\ -c & -d \end{bmatrix} \in \mathbb{W} \text{ and } p, q \in \mathbb{R}.$$
 Then
$$p\vec{\mathbf{u}} + q\vec{\mathbf{v}} = p \begin{bmatrix} a & b \\ -a & -b \end{bmatrix} + q \begin{bmatrix} c & d \\ -c & -d \end{bmatrix} = \begin{bmatrix} pa + qc & pb + qd \\ -(pa + qc) & -(pb + qd) \end{bmatrix} \in \mathbb{W}$$

since each column sums to 0.