- This exam is worth 150 points and has 8 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Begin each problem on a new page.
- DO NOT LEAVE THE EXAM UNTIL YOUR HAVE SATISFACTORILY SCANNED <u>AND</u> UPLOADED YOUR EXAM TO GRADESCOPE.
- You are taking this exam in a proctored and honor code enforced environment. No calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on both sides.
- 0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2360/121923 (24 pts)] Write the word **TRUE** or **FALSE** as appropriate. Write your answers in a single column separate from any work you do. No work need be shown. No partial credit given.
 - (a) The set \mathbb{W} consisting of vectors of the form $\vec{\mathbf{x}} = \begin{bmatrix} a & b & 0 & a-b \end{bmatrix}^{\mathrm{T}}$ is a subspace of \mathbb{R}^4 .
 - (b) y = 4 is the only equilibrium solution of $y' = t(y 4)^2$.
 - (c) If the Wronskian of two arbitrary functions is identically zero on the real line, then the two functions must always be linearly dependent on \mathbb{R} .
 - (d) If $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is consistent, then $\vec{\mathbf{b}} \in \text{Col } \mathbf{A}$.
 - (e) If $\vec{\mathbf{x}}$ is an $n \times 1$ matrix and \mathbf{A} is an $n \times n$ matrix, then $\vec{\mathbf{x}}^{T} \mathbf{A} \vec{\mathbf{x}}$ is an $n \times 1$ matrix.
 - (f) The system $\begin{cases} x' = x(3 x 2y) \\ y' = y(2 y x) \end{cases}$ has an equilibrium solution at the origin and a v nullcline of y = 2 x.
 - (g) Every first order linear homogeneous differential equation is separable.
 - (h) If A is an $n \times n$ matrix with two eigenvalues equal to 0, then the columns of A are linearly dependent and the solution to $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$, where $\vec{\mathbf{b}}$ is an $n \times 1$ matrix, is $\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$.
- 2. [2360/121923 (18 pts)] Let $f(t) = t \operatorname{step}(t) t \operatorname{step}(t-1) 3 \operatorname{step}(t-2)$.
 - (a) (5 pts) Write f(t) as a piecewise defined function.
 - (b) (5 pts) Make a well-labeled graph of f(t) on the interval [-4, 4].
 - (c) (8 pts) Find $\mathscr{L}{f(t)}$.
- 3. [2360/121923 (20 pts)] A mass-spring system at t = 0 features the 1-kg mass at rest at the equilibrium position. The restoring constant is 40 N/m and the system is hooked up so that the damping force is numerically equal to 4 times the instantaneous velocity. The oscillator is subjected to a driving force of $f(t) = 40 + \delta(t-2)$. Find the displacement, x(t), of the mass for all t > 0.
- 4. [2360/121923 (15 pts)] Two 100-gallon tanks are completely full. Initially, tank 1 contains 5 pounds of dissolved sugar and tank 2 has 3 pounds of dissolved sugar in it. The contents in the tanks are well stirred. The flow rate into tank 1 is always 20 gallons per minute (gpm). For $0 \le t < 4$, fresh water enters tank 1. For $t \ge 4$, the water entering tank 1 contains t pounds of sugar per gallon. For all $t \ge 0$, solution from tank 1 enters tank 2 at 25 gpm; also, solution from tank 2 enters tank 1 at 5 gpm and leaves tank 2 at 20 gpm. Set up, but **do not solve**, an initial value problem whose solution will give the amount of sugar in each tank for all time. Write your final answer using matrices and vectors.
- 5. [2360/121923 (12 pts) A certain object's temperature, T(t), is governed by the differential equation $\frac{dT}{dt} = 2(te^{-2t} T)$. If it's temperature when t = 0 is 1, find its temperature when t = 1.
- 6. [2360/121923 (18 pts)] Let $\mathbf{A} = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$.
 - (a) (4 pts) Use the definition of eigenvalues/eigenvectors to show that $\lambda = i$ and $\vec{\mathbf{v}} = \begin{bmatrix} 1 i \\ 1 \end{bmatrix}$ are an eigenvalue/eigenvector pair of matrix **A**. No credit for using determinants.
 - (b) (14 pts) Solve the initial value problem $\vec{\mathbf{x}}' = \mathbf{A}\vec{\mathbf{x}}, \ \vec{\mathbf{x}}(0) = \begin{bmatrix} 5\\2 \end{bmatrix}$, writing your answer as a single vector.

CONTINUED ON REVERSE

7. [2360/121923 (10 pts)] Consider the system of differential equations $\vec{\mathbf{x}}' = \mathbf{A}\vec{\mathbf{x}}$. Match the phase portrait to the appropriate system for the given matrices. Write your answers in a single column separate from any work you do. No work need be shown. No partial credit given.

- 8. [2360/121923 (33 pts)] Consider the matrix $\mathbf{A} = \begin{bmatrix} c & 1 & 1 \\ 1 & c & 1 \\ 1 & 1 & c \end{bmatrix}$.
 - (a) (5 pts) Show that $|\mathbf{A}| = c^3 3c + 2$ by using the cofactor expansion method, expanding along the first row.
 - (b) (2 pts) Verify that $c^3 3c + 2 = (c+2)(c^2 2c + 1)$.
 - (c) (4 pts) Using the result in part (b), find the roots of $c^3 3c + 2 = 0$ and state the multiplicity of each.
 - (d) (12 pts) Using the information gathered in parts (a), (b), and (c), determine the number of solutions to the system $\mathbf{A}\vec{\mathbf{x}} = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$ if i. c = 1 ii. $c \neq 1, -2$ iii. c = -2
 - (e) (5 pts) Find a basis for the solution space of $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{0}}$ when c = 1. What is the dimension of the solution space for this case?
 - (f) (5 pts) Suppose the characteristic equation of a linear, homogeneous, constant coefficient differential equation is $r^3 3r + 2 = 0$. Use the information from parts (a), (b) and (c) to answer the following questions.
 - i. (3 pts) Find a basis for the solution space of the differential equation.
 - ii. (2 pts) Find the form of the particular solution you would use in the Method of Undetermined Coefficients if the differential equation was forced by the nonhomogeneous term $f(t) = e^{2t} + t^2 e^t$. Do not solve for the coefficients.

$$\begin{split} & \textbf{Short table of Laplace Transforms:} \quad \mathscr{L}\left\{f(t)\right\} = F(s) \equiv \int_{0}^{\infty} e^{-st} f(t) \, \mathrm{d}t \\ & \text{In this table, } a, b, c \text{ are real numbers with } c \geq 0, \text{ and } n = 0, 1, 2, 3, \dots \\ & \mathscr{L}\left\{t^{n}e^{at}\right\} = \frac{n!}{(s-a)^{n+1}} \qquad \mathscr{L}\left\{e^{at}\cos bt\right\} = \frac{s-a}{(s-a)^{2}+b^{2}} \qquad \mathscr{L}\left\{e^{at}\sin bt\right\} = \frac{b}{(s-a)^{2}+b^{2}} \\ & \mathscr{L}\left\{\cosh bt\right\} = \frac{s}{s^{2}-b^{2}} \qquad \mathscr{L}\left\{\sinh bt\right\} = \frac{b}{s^{2}-b^{2}} \\ & \mathscr{L}\left\{t^{n}f(t)\right\} = (-1)^{n}\frac{\mathrm{d}^{n}F(s)}{\mathrm{d}s^{n}} \qquad \mathscr{L}\left\{e^{at}f(t)\right\} = F(s-a) \qquad \mathscr{L}\left\{\delta(t-c)\right\} = e^{-cs} \\ & \mathscr{L}\left\{tf'(t)\right\} = -F(s) - s\frac{\mathrm{d}F(s)}{\mathrm{d}s} \qquad \mathscr{L}\left\{f(t-c)\operatorname{step}(t-c)\right\} = e^{-cs}F(s) \qquad \mathscr{L}\left\{f(t)\operatorname{step}(t-c)\right\} = e^{-cs}\mathscr{L}\left\{f(t+c)\right\} \\ & \mathscr{L}\left\{f^{(n)}(t)\right\} = s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - s^{n-3}f''(0) - \cdots - f^{(n-1)}(0) \end{split}$$