- This exam is worth 100 points and has 6 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- **DO NOT** leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. **NO** calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on one side.
- 0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2360/102523 (10 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.

For all parts of the problem, assume A is a 2×5 matrix and C is a singular 5×5 matrix.

- (a) $\left| \left(\mathbf{A} \mathbf{A}^{T} \right)^{2} \right| \neq \left| \mathbf{A} \mathbf{A}^{T} \right|^{2}$
- (b) 0 is an eigenvalue of **C**.
- (c) $\mathbf{C}\vec{\mathbf{x}} = \vec{\mathbf{0}}$ is inconsistent.
- (d) $\mathbf{A} + (\mathbf{C}\mathbf{A}^{\mathrm{T}})^{\mathrm{T}}$ is not defined.

(e)
$$(\text{Tr } \mathbf{C})^2 - 4|\mathbf{C}| = (\text{Tr } \mathbf{C})^2$$

- 2. [2360/102523 (25 pts)] Let $\mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 4 & -1 & 0 \\ 6 & 3 & 1 \end{bmatrix}$.
 - (a) (10 pts) Use Gauss-Jordan elimination to find \mathbf{B}^{-1} .
 - (b) (5 pts) State the definition for $n \times n$ matrix **H** to be the inverse of $n \times n$ matrix **G** (there are two requirements). Verify that your answer to part (a) is correct by showing that one of the requirements in the definition holds.
 - (c) (6 pts) Use your answer to part (a) to solve the system $\mathbf{B}\vec{\mathbf{y}} = \vec{\mathbf{c}}$ where $\vec{\mathbf{c}} = \begin{bmatrix} 4 & 10 & 6 \end{bmatrix}^{\mathrm{T}}$.
 - (d) (4 pts) Is Col $\mathbf{B} = \mathbb{R}^3$? Explain briefly in words.
- 3. [2360/102523 (16 pts)] Consider the system

$$x_1 + 6x_2 - 2x_3 + 3x_4 = 5$$
$$3x_1 + 17x_2 - 6x_3 + 9x_4 = 13$$

- (a) (8 pts) Find the solution to the system, writing your answer using the Nonhomogeneous Principle.
- (b) (8 pts) Find a basis for the solution space of the associated homogeneous system. What is its dimension?

4. [2360/102523 (15 pts)] Let
$$\mathbf{F} = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

- (a) (5 pts) Using the definition of what it means to be an eigenvalue/eigenvector pair (do not use a determinant), find the eigenvalue associated the eigenvector $\vec{\mathbf{v}}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.
- (b) (10 pts) The other eigenvalue is -2. What is its algebraic multiplicity? Find its geometric multiplicity as well as a basis for and the dimension of its eigenspace.

CONTINUED ON REVERSE

- 5. [2360/102523 (18 pts) Determine which of the following subsets of \mathbb{M}_{33} are subspaces. Justify your answers.
 - (a) (6 pts) The subset, \mathbb{W} , of matrices of the form $\begin{bmatrix} a & 0 & a \\ 0 & a+2 & 0 \\ a & 0 & a \end{bmatrix}$ where $a \in \mathbb{R}$.
 - (b) (6 pts) The subset, \mathbb{W} , of 3×3 skew symmetric matrices $(\mathbf{A}^{T} = -\mathbf{A})$.
 - (c) (6 pts) The subset, \mathbb{W} , of 3×3 upper triangular matrices with rational number entries.
- 6. [2360/102523 (16 pts)] The following parts are not related. Both parts require complete justification.
 - (a) (8 pts) Is the set $\{e^t, t, t^2\}$ linearly dependent or independent on the real line?

(b) (8 pts) Does span
$$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-3 \end{bmatrix} \right\} = \mathbb{R}^3$$
?