1. [2360/101922 (24 pts)] The following parts are not related.
(a) (10 pts) Show that the Wronskian of the functions $\left\{t+3, t^{2}-1,2 t^{2}-t-5\right\}$ cannot be used to determine if the functions are linearly dependent or independent.
(b) (14 pts) Consider the linear system

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}=4 \\
x_{1}+2 x_{2}=2 \\
x_{1}+x_{2}+3 x_{3}=-7
\end{gathered}
$$

Use the inverse of the coefficient matrix to find the solution to the system. You must use elementary row operations to find the inverse.

SOLUTION:

(a)

$$
\begin{aligned}
W\left[t+3, t^{2}-1,2 t^{2}-t-5\right](t) & =\left|\begin{array}{ccc}
t+3 & t^{2}-1 & 2 t^{2}-t-5 \\
1 & 2 t & 4 t-1 \\
0 & 2 & 4
\end{array}\right| \\
& =2(-1)^{3+2}\left|\begin{array}{cc}
t+3 & 2 t^{2}-t-5 \\
1 & 4 t-1
\end{array}\right|+4(-1)^{3+3}\left|\begin{array}{cc}
t+3 & t^{2}-1 \\
1 & 2 t
\end{array}\right| \\
& =-2\left(4 t^{2}-t+12 t-3-2 t^{2}+t+5\right)+4\left(2 t^{2}+6 t-t^{2}+1\right) \\
& =-4 t^{2}-24 t-4+4 t^{2}+24 t+4=0
\end{aligned}
$$

Since the Wronskian of the functions vanishes identically, we can conclude nothing about the linear dependence or independence of the functions.
(b) The system can be written as $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ with $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 3\end{array}\right]$, $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \overrightarrow{\mathbf{b}}=\left[\begin{array}{r}4 \\ 2 \\ -7\end{array}\right]$. We need to find \mathbf{A}^{-1} so that $\overrightarrow{\mathbf{x}}=\mathbf{A}^{-1} \overrightarrow{\mathbf{b}}$.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
1 & 1 & 3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & -1 & 2 & -1 & 0 & 1
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & -1 & 0 & -3 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -6 & 5 & 2 \\
0 & 1 & 0 & 3 & -2 & -1 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] \Longrightarrow \mathbf{A}^{-1}=\left[\begin{array}{rrr}
-6 & 5 & 2 \\
3 & -2 & -1 \\
1 & -1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
-6 & 5 & 2 \\
3 & -2 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{r}
4 \\
2 \\
-7
\end{array}\right]=\left[\begin{array}{r}
-28 \\
15 \\
2
\end{array}\right]}
\end{aligned}
$$

2. [2360/101922 (20 pts)] The following parts are not related. Justify your answers.
(a) (10 pts) Does the set $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]\right\}$ form a basis for \mathbb{R}^{3} ?
(b) (10 pts) Determine if the following subsets \mathbb{W} of the given vector space \mathbb{V} are subspaces. Assume that the standard definitions of vector addition and scalar multiplication apply.
i. (5 pts) $\mathbb{V}=\mathbb{M}_{33} ; \mathbb{W}$ is the set of matrices of the form $\left[\begin{array}{lll}r & 0 & p \\ 0 & s & 0 \\ q & 0 & t\end{array}\right]$ where p, q are real numbers and r, s, t are integers.
ii. (5 pts$) \mathbb{V}=\mathbb{R}^{3} ; \mathbb{W}$ is the set of solutions to the equation $4 x_{1}-3 x_{2}+9 x_{3}=0$.

SOLUTION:

(a) There are three vectors in \mathbb{R}^{3}, a vector space of dimension 3. Check for linear independence:

$$
\begin{gathered}
c_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow\left[\begin{array}{rrr}
1 & 0 & 2 \\
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left|\begin{array}{rrr}
1 & 0 & 2 \\
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right|=1(-1)^{1+1}\left|\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right|+1(-1)^{2+1}\left|\begin{array}{rr}
0 & 2 \\
1 & -1
\end{array}\right|=-2+2=0
\end{gathered}
$$

The vectors are linearly dependent and thus cannot form a basis for \mathbb{R}^{3}.
(b) i. \mathbb{W} is not a subspace. \mathbb{W} is closed under vector addition (the sum of two integers is an integer) but is not closed under scalar multiplication. For example,

$$
\overrightarrow{\mathbf{u}}=\mathbf{I} \in \mathbb{W} \quad \text { but } \quad \sqrt{2} \overrightarrow{\mathbf{u}}=\left[\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2}
\end{array}\right] \notin \mathbb{W}
$$

ii. \mathbb{W} is a subspace. Use linear combinations to check for closure. Let $\alpha, \beta \in \mathbb{R}$ and

$$
\overrightarrow{\mathbf{u}}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \in \mathbb{W} \Longrightarrow 4 u_{1}-3 u_{2}+9 u_{3}=0 \quad \text { and } \quad \overrightarrow{\mathbf{v}}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \in \mathbb{W} \Longrightarrow 4 v_{1}-3 v_{2}+9 v_{3}=0
$$

Then $\alpha \overrightarrow{\mathbf{u}}+\beta \overrightarrow{\mathbf{v}}=\left[\begin{array}{l}\alpha u_{1}+\beta v_{1} \\ \alpha u_{2}+\beta v_{2} \\ \alpha u_{3}+\beta v_{3}\end{array}\right]$ and

$$
\begin{aligned}
4\left(\alpha u_{1}+\beta v_{1}\right) & -3\left(\alpha u_{2}+\beta v_{2}\right)+9\left(\alpha u_{3}+\beta u_{3}\right) \\
& =\alpha\left(4 u_{1}-3 u_{2}+9 u_{3}\right)+\beta\left(4 v_{1}-3 v_{2}+9 v_{3}\right) \\
& =\alpha(0)+\beta(0) \\
& =0+0=0 \Longrightarrow \alpha \overrightarrow{\mathbf{u}}+\beta \overrightarrow{\mathbf{v}} \in \mathbb{W}
\end{aligned}
$$

\mathbb{W} is closed under vector addition and scalar multiplication and therefore a subspace. Note also that the equation is linear and homogeneous and hence the Superposition Principle applies, which is essentially the closure properties.
3. [2360/101922 (12 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) For any matrix $\mathbf{A},\left|\mathbf{A}^{\mathrm{T}} \mathbf{A}\right|$ and $\left|\mathbf{A A}^{\mathrm{T}}\right|$ are defined.
(b) For invertible matrices \mathbf{A} and $\mathbf{B},\left|\mathbf{A B}^{-1}\right|=|\mathbf{A}| /|\mathbf{B}|$.
(c) If square matrix \mathbf{A} has 0 for an eigenvalue, then Cramer's Rule can be used to solve the system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$.
(d) $\operatorname{Tr}\left[(2 \mathbf{I})^{3}\right]=24$ where \mathbf{I} is the 3×3 identity matrix.
(e) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \in \operatorname{span}\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right\}$
(f) Homogeneous systems of linear algebraic equations are never inconsistent.

SOLUTION:

(a) TRUE If \mathbf{A} is $m \times n$, then $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ is $n \times n$ and $\mathbf{A} \mathbf{A}^{\mathrm{T}}$ is $m \times m$ which are both square and the determinant is defined.
(b) TRUE $\left|\mathbf{A B}^{-1}\right|=|\mathbf{A}|\left|\mathbf{B}^{-1}\right|=|\mathbf{A}||\mathbf{B}|^{-1}=|\mathbf{A}| /|\mathbf{B}|$
(c) FALSE If 0 is an eigenvalue of a square matrix, then $|\mathbf{A}|=0$ and Cramer's Rule cannot be used.
(d) $\operatorname{TRUE} \operatorname{Tr}\left[(2 \mathbf{I})^{3}\right]=\operatorname{Tr}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]^{3}=\operatorname{Tr}\left(\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\right)=\operatorname{Tr}\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]=24$
(e) FALSE $c_{1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+c_{2}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ has no solution. $0 c_{1}+0 c_{2}$ can never equal 3 .
(f) TRUE They always have at least the trivial solution.
4. $[2360 / 101922$ (22 pts) $]$ Consider the augmented matrix $\left[\begin{array}{llll|l}1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$ derived from the linear system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$.
(a) (10 pts) If the matrix is in RREF, write the word YES. Otherwise, write NO and put the matrix in RREF.
(b) (12 pts) Find a basis for the solution space of the system. What is the dimension of the solution space?

SOLUTION:

(a) NO. The following operations will put the matrix into RREF: $R_{2} \leftrightarrow R_{3}$ then $R_{1}^{*}=-1 R_{2}+R_{1}$.

$$
\left[\begin{array}{llll|l}
1 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) From the RREF, the leading/basic variables corresponding to the pivot columns are x_{1} and x_{4}. The free variables are $x_{2}=s$ and $x_{3}=t$. The solutions of the system are

$$
\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
s \\
t \\
0
\end{array}\right]=s\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-2 \\
0 \\
1 \\
0
\end{array}\right], s, t \in \mathbb{R} \quad \text { or equivalently } \overrightarrow{\mathbf{x}} \in \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

The solution space has dimension 2 with basis $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 1 \\ 0\end{array}\right]\right\}$.
5. [2360/101922 (22 pts)] The following parts are not related.
(a) (10 pts) The characteristic polynomial of a certain matrix \mathbf{B} is $p(\lambda)=2 \lambda^{6}+6 \lambda^{5}+5 \lambda^{4}$.
i. (2 pts) What is the order/size of the matrix \mathbf{B} ?
ii. (8 pts) Find the eigenvalues of \mathbf{B} and their (algebraic) multiplicities. Do not find the eigenvectors.
(b) (12 pts) Let $\mathbf{A}=\left[\begin{array}{rrrr}-7 & 4 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 4 & -7 & -1 \\ 0 & 0 & 0 & -7\end{array}\right]$ and let \mathbb{E}_{-7} denote the eigenspace associated with eigenvalue $\lambda=-7$. Find a basis for and the dimension of \mathbb{E}_{-7}.

SOLUTION:

(a) i. Since the characteristic polynomial is degree $6, \mathbf{B}$ is of order 6 or 6×6.
ii.

$$
\begin{gathered}
2 \lambda^{6}+6 \lambda^{5}+5 \lambda^{4}=0 \\
\lambda^{4}\left(2 \lambda^{2}+6 \lambda+5\right)=0 \Longrightarrow \lambda=0 \quad \text { or } \quad 2 \lambda^{2}+6 \lambda+5=0 \\
\lambda=\frac{-6 \pm \sqrt{6^{2}-4(2)(5)}}{(2)(2)}=\frac{-6 \pm \sqrt{-4}}{4}=\frac{-6 \pm 2 i}{4}=\frac{-3 \pm i}{2}
\end{gathered}
$$

The eigenvalues of \mathbf{B} are 0 with multiplicity of 4 and $\frac{-3+i}{2}, \frac{-3-i}{2}$, each with multiplicity of 1 .
(b) We need to solve $(\mathbf{A}+7 \mathbf{I}) \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}$

$$
\left[\begin{array}{rrrr|l}
0 & 4 & 0 & -1 & 0 \\
0 & 8 & 0 & -2 & 0 \\
0 & 4 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& R_{2}^{*}=-2 R_{1}+R_{2} \\
& R_{3}^{*}=-1 R_{1}+R_{3} \\
& R_{1}^{*}=\frac{1}{4} R_{1}
\end{aligned} \xrightarrow{\text { RREF }}\left[\begin{array}{rrrr|r}
0 & 1 & 0 & -\frac{1}{4} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow \begin{aligned}
& v_{1}=r \\
& v_{2}=\frac{1}{4} v_{4}=\frac{1}{4} t \\
& v_{3}=s \\
& v_{4}=t
\end{aligned}
$$

A basis for \mathbb{E}_{-7} is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 4\end{array}\right]\right\}$ which has dimension 3.

