- 1. [2360/121121 (14 pts)] In your bluebook, in a column, write the letters (a)-(g) and next to each letter write the word **TRUE** or **FALSE** as appropriate. You need not show any work and no partial credit will be given.
 - (a) $y = t \ln t$ is a solution to the initial value problem $(y'')^2 3ty' + 3y = \frac{1 3t^3}{t^2}$, y(e) = e, y'(e) = 2 on the interval t > 0.
 - (b) The set \mathbb{W} of all 2×2 singular matrices is a subspace of \mathbb{M}_{22} .
 - (c) The oscillator governed by the differential equation $2\ddot{x} + 98x = -7\cos 7t$ is in resonance.
 - (d) If $\mathbf{AC}\mathbf{x} = \mathbf{b}$ has a unique solution for all \mathbf{b} , then $|\mathbf{A}| = 0$.
 - (e) $2t^2 + t$ is in span $\{1, 1 t, t^2\}$.
 - (f) $(\sin^2 x + 1) y = \sqrt{x} y'$ is a separable, linear, nonhomogeneous differential equation.
 - (g) If $\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -2 \end{bmatrix}$, then $\mathbf{A}\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 6 & -5 \\ -5 & 13 \end{bmatrix}$.

SOLUTION:

(a) **TRUE** $y' = 1 + \ln t, y'' = \frac{1}{t}, y(e) = e, y'(e) = 2$ and

$$(y'')^{2} - 3ty' + 3y = \left(\frac{1}{t}\right)^{2} - 3t(1 + \ln t) + 3(t \ln t) = \left(\frac{1}{t}\right)^{2} - 3t = \frac{1 - 3t^{3}}{t^{2}}$$

(b) **FALSE** W is not closed under addition. For example,

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \in \mathbb{W} \text{ and } \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix} \in \mathbb{W} \text{ but } \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \notin \mathbb{W}$$

- (c) **TRUE** $\omega_0 = \sqrt{\frac{98}{2}} = \sqrt{49} = 7 = \omega_f$
- (d) **FALSE** If the system has a unique solution, then **AC** is invertible. Since $(\mathbf{AC})^{-1} = \mathbf{C}^{-1}\mathbf{A}^{-1}$, this implies **A** is invertible, further implying that $|\mathbf{A}| \neq 0$.
- (e) **TRUE** $(1)(1) + (-1)(1-t) + (2)(t^2) = 2t^2 + t$
- (f) **FALSE** The equation is linear (only y and y' present), separable $\left(\frac{\mathrm{d}y}{y} = \frac{\sin^2 x + 1}{\sqrt{x}} \mathrm{d}x\right)$, and homogeneous $\sqrt{x}y' + (\sin^2 x + 1) y = 0$
- (g) **TRUE** $\mathbf{A}\mathbf{A}^{T} = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 6 & -5 \\ -5 & 13 \end{bmatrix}$
- 2. [2360/121121 (20 pts)] Let $\mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}$.
 - (a) (10 pts) Find the eigenvalues of **B**. Hint: $x^3 x^2 + x 1 = (x 1)(x^2 + 1)$.
 - (b) (10 pts) Find a basis for the eigenspace associated with the real eigenvalue and determine its dimension.

SOLUTION:

(a) Expanding across the first row gives

$$\begin{vmatrix} 1 - \lambda & 0 & 1 \\ 1 & -\lambda & 0 \\ -1 & 1 & -\lambda \end{vmatrix} = (1 - \lambda)(-1)^{1+1} \begin{vmatrix} -\lambda & 0 \\ 1 & -\lambda \end{vmatrix} + (1)(-1)^{1+3} \begin{vmatrix} 1 & -\lambda \\ -1 & 1 \end{vmatrix}$$
$$= (1 - \lambda)\lambda^2 + 1 - \lambda = -\lambda^3 + \lambda^2 - \lambda + 1$$
$$= -(\lambda^3 - \lambda^2 + \lambda - 1) = -(\lambda - 1)(\lambda^2 + 1) = 0$$

giving $\lambda = 1, \pm i$ as the eigenvalues.

(b) To find the eigenvector associated with $\lambda = 1$, we need to find nontrivial solutions to $(\mathbf{B} - \mathbf{I}) \vec{\mathbf{v}} = \vec{\mathbf{0}}$.

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{\textbf{RREF}} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

so a basis for the eigenspace is $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$ with dimension 1.

- 3. [2360/121121 (21 pts)] Consider the matrix $\mathbf{A} = \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix}$ that has -2+i as one of its eigenvalues.
 - (a) (2 pts) What is the other eigenvalue?
 - (b) (9 pts) Let $\vec{\mathbf{v}} = \begin{bmatrix} 1 i \\ 1 \end{bmatrix}$.
 - i. (3 pts) Compute $\overrightarrow{A}\overrightarrow{v}$.
 - ii. (3 pts) Compute $(-2+i)\vec{\mathbf{v}}$.
 - iii. (3 pts) What do the two previous calculations allow you to conclude about $\vec{\mathbf{v}}$?
 - (c) (10 pts) Solve $\vec{\mathbf{x}}' = \mathbf{A}\vec{\mathbf{x}}$ if $\vec{\mathbf{x}}(0) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, writing your answer as a single vector. Hint: Most of the work necessary to solve this has been done already.

SOLUTION:

- (a) Since the entries of A are real, eigenvalues come in complex conjugate pairs so the other eigenvalue is -2 i.
- (b) i.

$$\mathbf{A}\vec{\mathbf{v}} = \begin{bmatrix} -3 & 2\\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1-i\\ 1 \end{bmatrix} = \begin{bmatrix} -3+3i+2\\ -1+i-1 \end{bmatrix} = \begin{bmatrix} -1+3i\\ -2+i \end{bmatrix}$$

ii.

$$(-2+i)\vec{\mathbf{v}} = (-2+i)\begin{bmatrix} 1-i\\1 \end{bmatrix} = \begin{bmatrix} -2+2i+i+1\\-2+i \end{bmatrix} = \begin{bmatrix} -1+3i\\-2+i \end{bmatrix}$$

- iii. Since $\overrightarrow{A}\overrightarrow{v} = (2+i)\overrightarrow{v}$, \overrightarrow{v} is the eigenvector associated with eigenvalue -2+i.
- (c) Eigenvalue -2 + i gives $\alpha = -2$ and $\beta = 1$. Eigenvector $\vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + i \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ gives $\vec{\mathbf{p}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{\mathbf{q}} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. This gives the general solution as

$$\vec{\mathbf{x}}(t) = c_1 e^{-2t} \left(\cos t \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \sin t \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) + c_2 e^{-2t} \left(\sin t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \cos t \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right)$$

Applying the initial condition results in

$$c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \implies c_1 - c_2 = -1 \implies c_1 = 1, c_2 = 2$$

giving the solution to the initial value problem as $\vec{\mathbf{x}}(t) = e^{-2t} \begin{bmatrix} 3\sin t - \cos t \\ 2\sin t + \cos t \end{bmatrix}$

- 4. [2360/121121 (22 pts)] The rate of change of the temperature, T(t), of a certain object is equal to $-2[T-(1+e^{-t})]$ where t is the time. The initial (t=0) temperature of the object is 6.
 - (a) (5 pts) Does Picard's theorem guarantee the existence of a unique solution to this initial value problem? Justify your answer.
 - (b) (5 pts) With stepsize 0.1, write the equation of Euler's Method to approximate the differential equation's solution numerically. Use variables t and T in the equation.
 - (c) (10 pts) Solve the exact differential equation to find T(t), the temperature at any time t.
 - (d) (2 pts) What is the steady state temperature, that is, what is the temperature after a "long" time?

SOLUTION:

- (a) Here the dependent variable is T (corresponding to y) and the independent variable is t. We have $f(t,T)=-2\left[T-(1+e^{-t})\right]$ which is a sum of functions that are continuous for all values of t and T and thus itself is continuous for all values of t and t and therefore in a rectangle containing (0,6). Furthermore, $f_T(t,T)=-2$ which is continuous everywhere and hence in a rectangle containing (0,6). Picard's Theorem guarantees a unique solution to the initial value problem.
- (b) $T_{n+1} = T_n + 0.1(-2)[(T_n (1 + e^{-t_n}))]$
- (c) We need to solve the initial value problem $\frac{\mathrm{d}T}{\mathrm{d}t}=-2T+2+2e^{-t},\,T(0)=6.$

Euler-Lagrange Two Stage Method (variation of parameters):

$$\frac{\mathrm{d}T_h}{\mathrm{d}t} = -2T_h$$

$$\int \frac{\mathrm{d}T_h}{T_h} = -2\int \mathrm{d}t$$

$$\ln|T_h| = -2t + k$$

$$|T_h| = e^k e^{-2t}$$

$$T_h = ce^{-2t}$$

Let $T_p = v(t)e^{-2t}$ and substitute into the differential equation to get

$$-2v(t)e^{-2t} + v'(t)e^{-2t} + 2v(t)e^{-2t} = 2 + 2e^{-t}$$
$$v'(t) = 2e^{2t} + 2e^{t}$$
$$v(t) = e^{2t} + 2e^{t}$$
$$T_p = (e^{2t} + 2e^{t})e^{-2t} = 1 + 2e^{-t}$$

Thus $T(t) = T_h + T_p = ce^{-2t} + 1 + 2e^{-t}$ and applying the initial condition gives $T(0) = c + 1 + 2 = 6 \implies c = 3$ so that

$$T(t) = 3e^{-2t} + 2e^{-t} + 1$$

Integrating Factor Method:

We can write the differential equation as $\frac{\mathrm{d}T}{\mathrm{d}t} + 2T = 2 + 2e^{-t}$ so that p(t) = 2 yielding an integrating factor of $\mu(t) = e^{2t}$. Then

$$e^{2t} \left(\frac{dT}{dt} + 2T = 2 + 2e^{-t} \right)$$
$$\left(e^{2t}T \right)' = 2e^{2t} + 2e^{t}$$
$$e^{2t}T = e^{2t} + 2e^{t} + c$$
$$T(t) = 1 + 2e^{-t} + ce^{-2t}$$

Applying the initial condition gives $T(0) = 1 + 2 + c = 6 \implies c = 3$ so that

$$T(t) = 3e^{-2t} + 2e^{-t} + 1$$

- (d) $\lim_{t \to \infty} T(t) = 1$ which is the steady state temperature.
- 5. [2360/121121 (20 pts)] Use the method of undetermined coefficients to solve the initial value problem $\frac{\mathrm{d}^3 y}{\mathrm{d}t^3} \frac{\mathrm{d}y}{\mathrm{d}t} = 12e^{2t}$ with initial conditions $y(0) = 2, \ y'(0) = 4, \ y''(0) = 11$. Use Cramer's rule to solve any linear system of algebraic equations that should arise.

Solve the associated homogeneous equation $y_h''' - y_h' = 0$ whose characteristic equation is $r^3 - r = r(r^2 - 1) = r(r+1)(r-1) = 0$ with roots 0, 1, -1 giving $y_h = c_1 + c_2 e^t + c_3 e^{-t}$.

We guess that $y_p = Ae^{2t}$.

$$y_p''' - y_p' = 8Ae^{2t} - 2Ae^{2t} = 6Ae^{2t} = 12e^{2t} \implies A = 2 \implies y_p = 2e^{2t}$$

so that the general solution is

$$y(t) = y_h + y_p = c_1 + c_2 e^t + c_3 e^{-t} + 2e^{2t}$$
 with $y'(t) = c_2 e^t - c_3 e^{-t} + 4e^{2t}$ and $y''(t) = c_2 e^t + c_3 e^{-t} + 8e^{2t}$

Applying the initial conditions yields

$$c_1 + c_2 + c_3 + 2 = 2$$
$$c_2 - c_3 + 4 = 4$$
$$c_2 + c_3 + 8 = 11$$

which can be written as

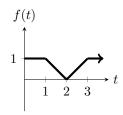
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

Using Cramer's Rule to solve we have

$$c_{1} = \frac{\begin{vmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}} = \frac{-6}{2} = -3 \qquad c_{2} = \frac{\begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 3 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}} = \frac{3}{2} \qquad c_{3} = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}} = \frac{3}{2}$$

The solution to the initial value problem is $y(t)=-3+\frac{3}{2}e^t+\frac{3}{2}e^{-t}+2e^{2t}$. [Just for fun, $y(t)=3(\cosh t-1)+2e^{2t}$].

- 6. [2360/121121 (35 pts)] The following problems are not related.
 - (a) (10 pts) Using the graph below, write the function f(t), defined on $[0, \infty)$, as a single function using step functions.



- (b) (10 pts) Find the Laplace Transform of $f(t) = 7t^2 \operatorname{step}(t-3) + e^{-t+5} \operatorname{step}(t-5)$.
- (c) (15 pts) Solve the initial value problem $y'' + y' = \delta(t-2)$, y(0) = 1, y'(0) = 0.

SOLUTION:

(a) Any of the following is acceptable, noting that the first term, 1, can be replaced with step(t) in all of the them.

$$f(t) = 1 - \operatorname{step}(t-1) + (2-t)\operatorname{step}(t-1) - (2-t)\operatorname{step}(t-2) + (t-2)\operatorname{step}(t-2) - (t-2)\operatorname{step}(t-3) + \operatorname{step}(t-3)$$

$$= 1 - \operatorname{step}(t-1) + (2-t)\left[\operatorname{step}(t-1) - \operatorname{step}(t-2)\right] + (t-2)\left[\operatorname{step}(t-2) - \operatorname{step}(t-3)\right] + \operatorname{step}(t-3)$$

$$= 1 - \operatorname{step}(t-1) + (2-t)\left[\operatorname{step}(t-1) - \operatorname{step}(t-2)\right] - (2-t)\left[\operatorname{step}(t-2) - \operatorname{step}(t-3)\right] + \operatorname{step}(t-3)$$

$$= 1 - \operatorname{step}(t-1) + (2-t)\left[\operatorname{step}(t-1) - 2\operatorname{step}(t-2) + \operatorname{step}(t-3)\right] + \operatorname{step}(t-3)$$

Note: The first term can be written as step(t).

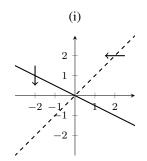
(b) We can rewrite $f(t) = 7t^2 \operatorname{step}(t-3) + e^{-(t-5)} \operatorname{step}(t-5)$. Then using the delay theorems (both forms) we have

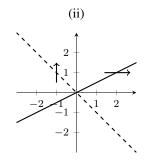
$$\mathcal{L}\left\{f(t)\right\} = 7e^{-3s}\mathcal{L}\left\{(t+3)^2\right\} + \frac{e^{-5s}}{s+1}$$
$$= 7e^{-3s}\mathcal{L}\left\{t^2 + 6t + 9\right\} + \frac{e^{-5s}}{s+1}$$
$$= 7e^{-3s}\left(\frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s}\right) + \frac{e^{-5s}}{s+1}$$

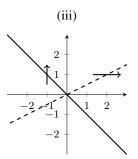
(c) Taking Laplace Transforms of both sides yields:

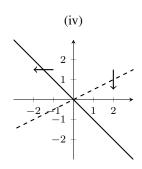
$$\begin{split} s^2Y(s)-sy(0)-y'(0)+sY(s)-y(0)&=e^{-2s}\\ \left(s^2+s\right)Y(s)&=e^{-2s}+s+1\\ Y(s)&=\frac{e^{-2s}}{s(s+1)}+\frac{s+1}{s(s+1)} \qquad \text{(simplification and partial fractions)}\\ Y(s)&=e^{-2s}\left(\frac{1}{s}-\frac{1}{s+1}\right)+\frac{1}{s}\\ y(t)&=\mathcal{L}^{-1}\{Y(s)\}=\left[1-e^{-(t-2)}\right]\operatorname{step}(t-2)+1 \end{split}$$

- 7. [2360/121121 (18 pts)] Consider the system of differential equations given by $\vec{\mathbf{x}}' = \begin{bmatrix} 1 & 1 \\ -2 & c \end{bmatrix} \vec{\mathbf{x}}$.
 - (a) (12 pts) Find all real values of c, if any, for which the isolated equilibrium solution (fixed point) at (0,0) is
 - i. a center ii. asymptotically stable
- iii. a saddle
- iv. an unstable degenerate (improper) or star node
- (b) (6 pts) Now let c=4. The four graphs below show h nullclines (dashed), v nullclines (solid) and 2 elements of the vector field (arrows) associated with this system. In your bluebook, write down which graph correctly depicts these features of the given system of differential equations.









SOLUTION:

- (a) Tr $\mathbf{A} = c + 1$ and $|\mathbf{A}| = c + 2$. Since we are only considering isolated equilibrium solutions, we must have $|\mathbf{A}| \neq 0$.
 - i. For a center, we need Tr $\mathbf{A} = 0$ and $|\mathbf{A}| > 0$. Thus c = -1.
 - ii. For asymptotic stability, we need to be in the second quadrant of the Tr A-|A| diagram. Thus

Tr
$$\mathbf{A} = c + 1 < 0 \implies c < -1$$
 and $|\mathbf{A}| = c + 2 > 0 \implies c > -2$ which combined require $-2 < c < -1$

- iii. For a saddle, we simply require $|\mathbf{A}| = c + 2 < 0 \implies c < -2$
- iv. For an unstable degenerate or star node we need $(\operatorname{Tr} \mathbf{A})^2 4|\mathbf{A}| = 0$, $\operatorname{Tr} \mathbf{A} > 0$, $|\mathbf{A}| > 0$. Thus

$$(c+1)^2 - 4(c+2) = 0$$

$$c^2 + 2c + 1 - 4c - 8 = 0$$

$$c^2 - 2c - 7 = 0$$

$$c = \frac{2 \pm \sqrt{32}}{2} = 1 \pm 2\sqrt{2}$$

Since we need Tr $\mathbf{A}>0$ and Tr $\mathbf{A}=c+1=2\pm2\sqrt{2}$ we have to choose the plus sign so that $c=1+2\sqrt{2}$. Note that with this value of c, $|\mathbf{A}|=3+2\sqrt{2}>0$ which is also required.

(b) The system can be written as

$$x_1' = x_1 + x_2$$
$$x_2' = -2x_1 + 4x_2$$

The h nullcline $(x_2'=0)$ is $x_2=\frac{1}{2}x_1$ and the v nullcline $(x_1'=0)$ is $x_2=-x_1$. The point (2,1) is on the h nullcline $(x_2'=0)$ and $x_1'>0$ there so the vector points to the right. The point (-1,1) is on the v nullcline $(x_1'=0)$ and $x_2'>0$ there so the vector points upward. Graph (iii) is the correct one.