Exam 3

- 1. [2360/111721 (20 pts)] Consider the differential equation $y'' \frac{2}{t^2}y = -6$ for $t \ge 1$.
 - (a) (10 pts) Show that the functions $y_1 = t^2$ and $y_2 = \frac{1}{t}$ form a basis for the solution space of the associated homogeneous problem. Justify your answer completely.
 - (b) (10 pts) Find the general solution to the original nonhomogeneous problem.

SOLUTION:

(a) Begin by showing that y_1 and y_2 are solutions.

$$y_1 - \frac{2}{t^2}y_1 = (t^2)'' - \frac{2}{t^2}t^2 = 2 - 2 = 0$$
$$y_2 - \frac{2}{t^2}y_2 = (t^{-1})'' - \frac{2}{t^2}t^{-1} = 2t^{-3} - 2t^{-3} = 0$$

Now show that y_1 and y_2 are linearly independent.

$$W[y_1, y_2](t) = \begin{vmatrix} t^2 & t^{-1} \\ 2t & -t^{-2} \end{vmatrix} = -3 \neq 0$$

so the functions are linearly independent on $t \ge 1$. Since the dimension of the solution space is 2 (second order equation) and we have two linearly independent solutions, they form a basis for the solution space of the association homogeneous equation.

(b) Since this is a variable coefficient differential equation, we must use variation of parameters. In this case, $y_p = v_1y_1 + v_2y_2$ and with f(t) = -6 we have

$$v_1' = -\frac{y_2 f}{W[y_1, y_2]} = -\frac{t^{-1}(-6)}{-3} = -2t^{-1} \implies v_1 = \int -2t^{-1} dt = -2\ln t$$
$$v_2' = \frac{y_1 f}{W[y_1, y_2]} = \frac{t^2(-6)}{-3} = 2t^2 \implies v_2 = \int 2t^2 dt = \frac{2}{3}t^3$$
$$y_p = -2\ln t(t^2) + \frac{2}{3}t^3(1/t) = \frac{2}{3}t^2 - 2t^2\ln t$$

The general solution is thus $y = y_h + y_p = c_1 t^2 + \frac{c_2}{t} + \frac{2}{3} t^2 - 2t^2 \ln t$.

2. [2360/111721 (16 pts)] A simple, damped pendulum of length L > 0 rotates/oscillates about a fixed point with damping constant $\alpha \ge 0$. Let x(t) denote the angle of the pendulum at time t (see figure).

When the amplitude of the oscillation is small and g > 0 is the acceleration due to gravity, we model the pendulum position by the equation

$$\ddot{x} + \frac{\alpha}{L}\dot{x} + \frac{g}{L}x = 0\tag{1}$$

- (a) (3 pts) What is the pendulum's circular frequency (ω_0) in the absence of damping ($\alpha = 0$)?
- (b) (7 pts) Suppose the damping, α , has a fixed known value.
 - i. (5 pts) Find all values of L such that the pendulum is underdamped.
 - ii. (2 pts) For these value(s) of L will the pendulum pass through the equilibrium (x = 0) more than once?
- (c) (6 pts) Determine the general solution of equation (1) with $\alpha = 2$, g = 1 and L = 2.

SOLUTION:

- (a) The circular frequency is $\omega_0 = \sqrt{g/L}$.
- (b) i. To be underdamped, we need

$$\frac{\alpha^2}{L^2} - 4(1)\frac{g}{L} < 0 \implies \alpha^2 < 4gL \implies L > \frac{\alpha^2}{4g}$$

ii. For these values of L, the pendulum will pass through the equilibrium more than once (infinitely many times).

(c) With these values of the parameters, the equation is $\ddot{x} + \dot{x} + \frac{1}{2}x = 0$. The characteristic equation is $r^2 + r + \frac{1}{2} = 0$ with roots

$$r = \frac{-1 \pm \sqrt{1 - 4(1)(\frac{1}{2})}}{2} = -\frac{1}{2} \pm \frac{1}{2}i \implies \alpha = -\frac{1}{2}, \beta = \frac{1}{2}$$

so the general solution is $x(t) = e^{-t/2} [c_1 \cos(t/2) + c_2 \sin(t/2)].$

3. [2360/111721 (18 pts)] The following parts (a) and (b) are not related.

- (a) (10 pts) The differential equation $2\ddot{x} + b\dot{x} + kx = F_0 \cos(2\pi t)$ governs the motion of a certain harmonic oscillator.
 - i. (5 pts) For what value(s) of F_0 , b and k, if any, will solutions to the equation grow without bound?
 - ii. (5 pts) Let k = 0.25 and $F_0 = 0$. Find all values of b (if any) that guarantee the solutions to the differential equation pass through the t-axis at most once.
- (b) (8 pts) Convert the initial value problem $y^{(4)} + y'' = -\sin t$, y(0) = 2, y'(0) = y''(0) = y''(0) = 1, to a system of first order differential equations with an appropriate initial condition. Write your final answer using matrices and vectors, if possible.

SOLUTION:

(a) i. The oscillator must be forced, so $F_0 \neq 0$. We need b = 0 (undamped) and $\omega_0 = \sqrt{\frac{k}{2}} = 2\pi \implies k = 8\pi^2$.

ii. We want the system to be critically damped or overdamped so $b^2 - 4(2)(0.25) \ge 0 \implies b^2 \ge 2 \implies b \ge \sqrt{2}$.

(b) Let $x_1 = y, x_2 = y', x_3 = y'', x_4 = y'''$. Then

$$\begin{aligned} x'_1 &= y' = x_2 \\ x'_2 &= y'' = x_3 \\ x'_3 &= y''' = x_4 \\ x'_4 &= y^{(4)} = -y'' - \sin t = -x_3 - \sin t \end{aligned}$$

$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$	=	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \end{array}$	0 1	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	+		,	$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$] =	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	
$\begin{vmatrix} x_2 \\ x_3' \end{vmatrix}$		0	0	0	1	$\begin{vmatrix} x_2 \\ x_3 \end{vmatrix}$		0		$x_{3}(0)$		$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
x'_4		0	0	-1	0	x_4		$-\sin t$		$x_4(0)$		$\lfloor 1 \rfloor$	

- 4. [2360/111721 (24 pts)] The following problems are not related.
 - (a) (6 pts) If $\mathscr{L} \{\cosh bt\} = \frac{s}{s^2 b^2}$, use the transform table at the end of the exam to find $\mathscr{L} \{t \cosh bt\}$. (b) (6 pts) Compute $\mathscr{L}^{-1} \left\{ \frac{s+5}{s^2 + 4s + 13} \right\}$.

(c) (12 pts) Use Laplace transforms to solve y'' + 5y = 0, y(0) = 7, y'(0) = 1.

SOLUTION:

(a)

$$\mathscr{L}\left\{t\cosh bt\right\} = (-1)^1 \frac{\mathrm{d}}{\mathrm{d}s} \mathscr{L}\left\{\cosh bt\right\} = -\frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{s}{s^2 - b^2}\right) = \frac{s^2 + b^2}{(s^2 - b^2)^2}$$

(b) Complete the square in the denominator.

$$\mathscr{L}^{-1}\left\{\frac{s+5}{s^2+4s+13}\right\} = \mathscr{L}^{-1}\left\{\frac{s+5}{(s+2)^2+9}\right\} = \mathscr{L}^{-1}\left\{\frac{s+2}{(s+2)^2+9} + \frac{3}{(s+2)^2+9}\right\} = e^{-2t}\cos 3t + e^{-2t}\sin 3t$$

(c) With $Y(s) = \mathscr{L} \{y\}$ we have

$$s^{2}Y(s) - sy(0) - y'(0) + 5Y(s) = 0$$

$$(s^{2} + 5) Y(s) = 7s + 1$$

$$Y(s) = \frac{7s}{s^{2} + 5} + \frac{1}{s^{2} + 5} = \frac{7s}{s^{2} + 5} + \frac{1}{\sqrt{5}} \frac{\sqrt{5}}{s^{2} + 5}$$

$$y(t) = \mathscr{L}^{-1} \{Y(s)\} = \mathscr{L}^{-1} \left\{ \frac{7s}{s^{2} + 5} + \frac{1}{\sqrt{5}} \frac{\sqrt{5}}{s^{2} + 5} \right\} = 7 \cos \sqrt{5}t + \frac{\sqrt{5}}{5} \sin \sqrt{5}t$$

- 5. [2360/111721 (22 pts)] A basis for the solution space of a certain third order homogeneous, constant coefficient linear differential equation $L(\vec{\mathbf{y}}) = 0$ is $\{1, t, e^{-2t}\}$.
 - (a) (3 pts) Write the characteristic equation.
 - (b) (3 pts) What is the general solution of the differential equation?
 - (c) (16 pts) Now consider the nonhomogeneous differential equation $L(\vec{y}) = f(t)$. For each f(t) below, write down the form of the particular solution you would use to solve the nonhomogeneous equation using the method of undetermined coefficients but **do** not solve for the coefficients.

i.
$$f(t) = 2$$

ii. $f(t) = 3t^2 - 1$
iii. $f(t) = te^{2t}$
iv. $f(t) = \sin t + \cos 2t + e^t$

SOLUTION:

(a)
$$r^{2}(r+2) = 0$$

(b) $y = c_{1} + c_{2}t + c_{3}e^{-2t}$
(c) i. $y_{p} = At^{2}$
ii. $y_{p} = At^{4} + Bt^{3} + Ct^{2}$
iii. $y_{p} = (At + B)e^{2t}$
iv. $y_{p} = A\sin t + B\cos t + C\sin 2t + D\cos 2t + Ee^{t}$