1. [2360/111721 (20 pts)] Consider the differential equation $y^{\prime \prime}-\frac{2}{t^{2}} y=-6$ for $t \geq 1$.
(a) (10 pts) Show that the functions $y_{1}=t^{2}$ and $y_{2}=\frac{1}{t}$ form a basis for the solution space of the associated homogeneous problem. Justify your answer completely.
(b) (10 pts) Find the general solution to the original nonhomogeneous problem.

SOLUTION:

(a) Begin by showing that y_{1} and y_{2} are solutions.

$$
\begin{aligned}
& y_{1}-\frac{2}{t^{2}} y_{1}=\left(t^{2}\right)^{\prime \prime}-\frac{2}{t^{2}} t^{2}=2-2=0 \\
& y_{2}-\frac{2}{t^{2}} y_{2}=\left(t^{-1}\right)^{\prime \prime}-\frac{2}{t^{2}} t^{-1}=2 t^{-3}-2 t^{-3}=0
\end{aligned}
$$

Now show that y_{1} and y_{2} are linearly independent.

$$
W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{cc}
t^{2} & t^{-1} \\
2 t & -t^{-2}
\end{array}\right|=-3 \neq 0
$$

so the functions are linearly independent on $t \geq 1$. Since the dimension of the solution space is 2 (second order equation) and we have two linearly independent solutions, they form a basis for the solution space of the association homogeneous equation.
(b) Since this is a variable coefficient differential equation, we must use variation of parameters. In this case, $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ and with $f(t)=-6$ we have

$$
\begin{gathered}
v_{1}^{\prime}=-\frac{y_{2} f}{W\left[y_{1}, y_{2}\right]}=-\frac{t^{-1}(-6)}{-3}=-2 t^{-1} \\
v_{2}^{\prime}=\frac{y_{1} f}{W\left[y_{1}, y_{2}\right]}=\frac{t^{2}(-6)}{-3}=2 t^{2} \Longrightarrow v_{1}=\int-2 t^{-1} \mathrm{~d} t=-2 \ln t \\
y_{p}=-2 \ln t\left(t^{2}\right)+\frac{2}{3} t^{3}(1 / t)=\frac{2}{3} t^{2}-2 t^{2} \ln t
\end{gathered}
$$

The general solution is thus $y=y_{h}+y_{p}=c_{1} t^{2}+\frac{c_{2}}{t}+\frac{2}{3} t^{2}-2 t^{2} \ln t$.
2. [2360/111721 (16 pts)] A simple, damped pendulum of length $L>0$ rotates/oscillates about a fixed point with damping constant $\alpha \geq 0$. Let $x(t)$ denote the angle of the pendulum at time t (see figure).

When the amplitude of the oscillation is small and $g>0$ is the acceleration due to gravity, we model the pendulum position by the equation

$$
\begin{equation*}
\ddot{x}+\frac{\alpha}{L} \dot{x}+\frac{g}{L} x=0 \tag{1}
\end{equation*}
$$

(a) (3 pts) What is the pendulum's circular frequency $\left(\omega_{0}\right)$ in the absence of damping $(\alpha=0)$?
(b) (7 pts) Suppose the damping, α, has a fixed known value.
i. (5 pts) Find all values of L such that the pendulum is underdamped.
ii. (2 pts) For these value(s) of L will the pendulum pass through the equilibrium $(x=0)$ more than once?
(c) (6 pts) Determine the general solution of equation (1) with $\alpha=2, g=1$ and $L=2$.

SOLUTION:

(a) The circular frequency is $\omega_{0}=\sqrt{g / L}$.
(b) i. To be underdamped, we need

$$
\frac{\alpha^{2}}{L^{2}}-4(1) \frac{g}{L}<0 \Longrightarrow \alpha^{2}<4 g L \Longrightarrow L>\frac{\alpha^{2}}{4 g}
$$

ii. For these values of L, the pendulum will pass through the equilibrium more than once (infinitely many times).
(c) With these values of the parameters, the equation is $\ddot{x}+\dot{x}+\frac{1}{2} x=0$. The characteristic equation is $r^{2}+r+\frac{1}{2}=0$ with roots

$$
r=\frac{-1 \pm \sqrt{1-4(1)\left(\frac{1}{2}\right)}}{2}=-\frac{1}{2} \pm \frac{1}{2} i \Longrightarrow \alpha=-\frac{1}{2}, \beta=\frac{1}{2}
$$

so the general solution is $x(t)=e^{-t / 2}\left[c_{1} \cos (t / 2)+c_{2} \sin (t / 2)\right]$.
3. [2360/111721 (18 pts)] The following parts (a) and (b) are not related.
(a) (10 pts) The differential equation $2 \ddot{x}+b \dot{x}+k x=F_{0} \cos (2 \pi t)$ governs the motion of a certain harmonic oscillator.
i. (5 pts) For what value(s) of F_{0}, b and k, if any, will solutions to the equation grow without bound?
ii. (5 pts) Let $k=0.25$ and $F_{0}=0$. Find all values of b (if any) that guarantee the solutions to the differential equation pass through the t-axis at most once.
(b) (8 pts) Convert the initial value problem $y^{(4)}+y^{\prime \prime}=-\sin t, y(0)=2, y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1$, to a system of first order differential equations with an appropriate initial condition. Write your final answer using matrices and vectors, if possible.

SOLUTION:

(a) i. The oscillator must be forced, so $F_{0} \neq 0$. We need $b=0$ (undamped) and $\omega_{0}=\sqrt{\frac{k}{2}}=2 \pi \Longrightarrow k=8 \pi^{2}$.
ii. We want the system to be critically damped or overdamped so $b^{2}-4(2)(0.25) \geq 0 \Longrightarrow b^{2} \geq 2 \Longrightarrow b \geq \sqrt{2}$.
(b) Let $x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}, x_{4}=y^{\prime \prime \prime}$. Then

$$
\begin{gathered}
x_{1}^{\prime}=y^{\prime}=x_{2} \\
x_{2}^{\prime}=y^{\prime \prime}=x_{3} \\
x_{3}^{\prime}=y^{\prime \prime \prime}=x_{4} \\
x_{4}^{\prime}=y^{(4)}=-y^{\prime \prime}-\sin t=-x_{3}-\sin t \\
{\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime} \\
x_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
-\sin t
\end{array}\right],\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0) \\
x_{4}(0)
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]}
\end{gathered}
$$

4. [2360/111721 (24 pts)] The following problems are not related.
(a) (6 pts) If $\mathscr{L}\{\cosh b t\}=\frac{s}{s^{2}-b^{2}}$, use the transform table at the end of the exam to find $\mathscr{L}\{t \cosh b t\}$.
(b) (6 pts) Compute $\mathscr{L}^{-1}\left\{\frac{s+5}{s^{2}+4 s+13}\right\}$.
(c) (12 pts) Use Laplace transforms to solve $y^{\prime \prime}+5 y=0, y(0)=7, y^{\prime}(0)=1$.

SOLUTION:

(a)

$$
\mathscr{L}\{t \cosh b t\}=(-1)^{1} \frac{\mathrm{~d}}{\mathrm{~d} s} \mathscr{L}\{\cosh b t\}=-\frac{\mathrm{d}}{\mathrm{~d} s}\left(\frac{s}{s^{2}-b^{2}}\right)=\frac{s^{2}+b^{2}}{\left(s^{2}-b^{2}\right)^{2}}
$$

(b) Complete the square in the denominator.

$$
\mathscr{L}^{-1}\left\{\frac{s+5}{s^{2}+4 s+13}\right\}=\mathscr{L}^{-1}\left\{\frac{s+5}{(s+2)^{2}+9}\right\}=\mathscr{L}^{-1}\left\{\frac{s+2}{(s+2)^{2}+9}+\frac{3}{(s+2)^{2}+9}\right\}=e^{-2 t} \cos 3 t+e^{-2 t} \sin 3 t
$$

(c) With $Y(s)=\mathscr{L}\{y\}$ we have

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+5 Y(s)=0 \\
\left(s^{2}+5\right) Y(s)=7 s+1 \\
Y(s)=\frac{7 s}{s^{2}+5}+\frac{1}{s^{2}+5}=\frac{7 s}{s^{2}+5}+\frac{1}{\sqrt{5}} \frac{\sqrt{5}}{s^{2}+5} \\
y(t)=\mathscr{L}^{-1}\{Y(s)\}=\mathscr{L}^{-1}\left\{\frac{7 s}{s^{2}+5}+\frac{1}{\sqrt{5}} \frac{\sqrt{5}}{s^{2}+5}\right\}=7 \cos \sqrt{5} t+\frac{\sqrt{5}}{5} \sin \sqrt{5} t
\end{gathered}
$$

5. [2360/111721 (22 pts)] A basis for the solution space of a certain third order homogeneous, constant coefficient linear differential equation $L(\overrightarrow{\mathbf{y}})=0$ is $\left\{1, t, e^{-2 t}\right\}$.
(a) (3 pts) Write the characteristic equation.
(b) (3 pts) What is the general solution of the differential equation?
(c) (16 pts) Now consider the nonhomogeneous differential equation $L(\overrightarrow{\mathbf{y}})=f(t)$. For each $f(t)$ below, write down the form of the particular solution you would use to solve the nonhomogeneous equation using the method of undetermined coefficients but do not solve for the coefficients.
i. $f(t)=2$
ii. $f(t)=3 t^{2}-1$
iii. $f(t)=t e^{2 t}$
iv. $f(t)=\sin t+\cos 2 t+e^{t}$

SOLUTION:

(a) $r^{2}(r+2)=0$
(b) $y=c_{1}+c_{2} t+c_{3} e^{-2 t}$
(c) i. $y_{p}=A t^{2}$
ii. $y_{p}=A t^{4}+B t^{3}+C t^{2}$
iii. $y_{p}=(A t+B) e^{2 t}$
iv. $y_{p}=A \sin t+B \cos t+C \sin 2 t+D \cos 2 t+E e^{t}$

