- This exam is worth 150 points and has 6 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. **NO** calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on two sides.
- Remote students are allowed use of a computer during the exam only for a live video of their hands and face and to view the exam in the Zoom meeting.
- 0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2350/072823 (20 pts)] A jellyfish swims along the path $\mathbf{r}(t) = t^2 \mathbf{i} + \mathbf{j} e^t \mathbf{k}$ from $0 \le t \le 3$ catching plankton as it moves along. If the density of plankton in the water is given by $P(x, y, z) = y\sqrt{4x + z^2}$ g/m find the total amount of plankton the jellyfish caught. Include units in your final answer.
- 2. [2350/072823 (30 pts)] The force of the current in Penelope the platypus's river can be described by the vector field $\mathbf{F} = (2x + \tan y)\mathbf{i} + (x \sec^2 y)\mathbf{j}$. Penelope swims first along the curve C_1 to the base of a waterfall then later returns along the curve C_2 with

• C_1 : the line segment from (2, 1) to (2, -1) • C_2 : the curve $x = 2 + \cos\left(\frac{\pi}{2}y\right)$ from (2, -1) to (2, 1)

- (a) (10 pts) Directly calculate the work done by the current on Penelope along C_1 by evaluating an appropriate line integral.
- (b) (10 pts) Find the potential function of \mathbf{F} .
- (c) (5 pts) Using a theorem from Calculus 3, determine the work done by the current on Penelope along C_2 .
- (d) (5 pts) Determine the total work done by the current along the union of the two paths: $C = C_1 \cup C_2$.
- 3. [2350/072823 (36 pts)] Consider the open surface cut from $z = -3\sqrt{x^2 + y^2}$ where $-3 \le z \le 0$.
 - (a) (5 pts) What quadric surface is this?
 - (b) (10 pts) Give a parameterization of the boundary curve, C, of this surface with a counterclockwise orientation when viewed from above.
 - (c) (5 pts) What portion of a plane shares the same boundary?
 - (d) (16 pts) Use Stokes' theorem to evaluate $\int_{\mathcal{C}} -3yz \, dx + 7x \, dy + z \, dz$.
- 4. [2350/072823 (18 pts)] Consider the closed boundary C made by the curves $x = y^2$ and $x = -y^2 + 2$ oriented counterclockwise. Compute the flux of **H** through C if $\mathbf{H} = \langle e^{-y^2} + 3x^2, \ln x + 6 \rangle$.
- 5. [2350/072823 (22 pts)] Consider a three dimensional solid, \mathcal{E} , bounded within $\mathcal{S}_1 : x^2 + y^2 + z^2 = 4$ and below $\mathcal{S}_2 : z = \sqrt{x^2 + y^2}$. Find the outward flux of $\mathbf{F} = \langle \sin y, x \ln(z+1), z^2 \rangle$ through the boundary of \mathcal{E} .
- 6. [2350/072823 (24 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
 - (a) The function $f(x, y) = 1 x^2 y^2$ is guaranteed to have a minimum value for all x, y in the first octant.
 - (b) The function $g(x, y) = e^{xy}$ has a saddle point at the origin.
 - (c) The cross product of k and the acceleration vector of the path $\mathbf{r}(t) = 2t \mathbf{i} + 5t \mathbf{j} + t^2 \mathbf{k}$ is never the zero vector.
 - (d) The line whose vector equation is $\mathbf{r}(t) = \langle 1, 6, 2 \rangle + t \langle -1, -3, 2 \rangle$ intersects the *xz*-plane at the point (-1, 0, 6).
 - (e) $\lim_{(x,y)\to(-1,0)} \frac{xy+x}{(x+1)^2+y^2-2}$ does not exist.
 - (f) The instantaneous rate of change of the function $g(x, y) = 4x^2 + 2x 3y^2$ at the origin is largest in the +j direction.