1. [2350/071423 (20 pts)] The portion of river, \mathcal{D}, that Penelope the platypus inhabits is bounded by the functions $x+y+4=0, x+y+4=8$, $x-2 y=-1$, and $x-2 y=1$. The depth (meters) of Penelope's river is described by $g(x, y)=3 y+4$. Use a change of variables to find the volume of Penelope's river in the region \mathcal{D}. Include appropriate units in your answer.

SOLUTION:

One change of variables is $u=x+y+4$ and $v=x-2 y$. This gives the new region of integration as $0 \leq u \leq 8$ and $-1 \leq v \leq 1$. Rearranging we find that $y=\frac{1}{3}(u-v-4)$ and $x=\frac{1}{3}(2 u+v-8)$. Thus,

$$
\begin{gathered}
J(u, v)=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{rr}
2 / 3 & 1 / 3 \\
1 / 3 & -1 / 3
\end{array}\right|=-\frac{1}{3} \\
g(u, v)=3\left[\frac{1}{3}(u-v-4)\right]+4=u-v \\
\text { Volume }=\iint_{\mathcal{D}}(3 y+4) \mathrm{d} A=\int_{-1}^{1} \int_{0}^{8}(u-v)\left|-\frac{1}{3}\right| \mathrm{d} u \mathrm{~d} v \\
=\left.\frac{1}{3} \int_{-1}^{1}\left(\frac{u^{2}}{2}-u v\right)\right|_{0} ^{8} \mathrm{~d} v \\
=\frac{1}{3} \int_{-1}^{1}(32-8 v) \mathrm{d} v \\
=\left.\frac{1}{3}\left(32 v-4 v^{2}\right)\right|_{-1} ^{1}=\frac{64}{3} \mathrm{~m}^{3}
\end{gathered}
$$

2. [2350/071423 (27 pts)] During a tea party with the Mad Hatter, you are given exactly a $1 / 2$ teacup of tea (pictured below) where the surface of the teacup is given by the equation $z=\left(x^{2}+y^{2}\right)^{2}$. It lies in the region where $y \leq 0$ and $0 \leq z \leq 1$. You wish to know the volume of tea you received. For each part below, set up the triple integral using the given coordinate system and order of integration. DO NOT EVALUATE the triple integrals. Note: To receive full credit your bounds must match the solid as it is pictured (so study the figure closely).
(a) Cartesian Coordinates with order $\mathrm{d} y \mathrm{~d} z \mathrm{~d} x$.
(b) Cylindrical Coordinates with order $\mathrm{d} z \mathrm{~d} r \mathrm{~d} \theta$
(c) Spherical coordinates with order $\mathrm{d} \rho \mathrm{d} \phi \mathrm{d} \theta$

SOLUTION:

(a)

$$
\int_{-1}^{1} \int_{x^{4}}^{1} \int_{-\sqrt{\sqrt{z}-x^{2}}}^{0} \mathrm{~d} y \mathrm{~d} z \mathrm{~d} x
$$

(b)

$$
\int_{\pi}^{2 \pi} \int_{0}^{1} \int_{r^{4}}^{1} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta \quad \text { or } \quad \int_{-\pi}^{0} \int_{0}^{1} \int_{r^{4}}^{1} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

(c)

$$
\int_{\pi}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta+\int_{\pi}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{\left(\cos \phi \csc ^{4} \phi\right)^{1 / 3}} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
$$

or

$$
\int_{-\pi}^{0} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta+\int_{-\pi}^{0} \int_{\pi / 4}^{\pi / 2} \int_{0}^{\left(\cos \phi \csc ^{4} \phi\right)^{1 / 3}} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
$$

3. [2350/071423 (18 pts)] Rewrite the following integrals as a single integral in polar coordinates and evaluate it. Drawing a picture should be beneficial.

$$
\int_{-2}^{-1} \int_{-x}^{\sqrt{8-x^{2}}} 3 x \mathrm{~d} y \mathrm{~d} x+\int_{-1}^{0} \int_{\sqrt{2-x^{2}}}^{\sqrt{8-x^{2}}} 3 x \mathrm{~d} y \mathrm{~d} x
$$

SOLUTION:

This is a portion of an annulus with inner radius of $\sqrt{2}$ and outer radius of $2 \sqrt{2}$ in the second quadrant. Rewriting in polar coordinates we have:

$$
\int_{\pi / 2}^{3 \pi / 4} \int_{\sqrt{2}}^{2 \sqrt{2}} 3 r^{2} \cos \theta \mathrm{~d} r \mathrm{~d} \theta=\left(\left.r^{3}\right|_{\sqrt{2}} ^{2 \sqrt{2}}\right)\left(\left.\sin \theta\right|_{\pi / 2} ^{3 \pi / 4}\right)=(16 \sqrt{2}-2 \sqrt{2})\left(\frac{\sqrt{2}}{2}-1\right)=14(1-\sqrt{2})
$$

4. [2350/071423 (22 pts)] Consider a thin leaf whose shape can be described by the region bounded by the curves $y=x^{2}$ and $y=x^{4}$ with $0 \leq x \leq 1$.
(a) (16 pts)] Assume the mass of the leaf is $\frac{1}{20}$ grams and its mass density is $\rho(x, y)=x \sqrt{y}$ grams per square centimeter.
i. (6 pts)] Find the moment of the leaf about the y-axis using the integration order $\mathrm{d} y \mathrm{~d} x$.
ii. (6 pts)] Find the moment of the leaf about the x-axis using the integration order $\underline{\mathrm{d} x \mathrm{~d} y}$.
iii. (4 pts)] What is center of mass, (\bar{x}, \bar{y}), of the leaf?
(b) (6 pts)] Now suppose the power density of sunlight hitting the leaf is $P(x, y)=k\left(1-x^{2}\right)$ watts per square centimeter and you know that the total power hitting the leaf is 8 watts. What is k ?

SOLUTION:

(a) i .

$$
\begin{aligned}
M_{y} & =\iint_{\text {leaf }} x \rho(x, y) \mathrm{d} A=\int_{0}^{1} \int_{x^{4}}^{x^{2}} x^{2} y^{1 / 2} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{1} x^{2}\left(\left.\frac{2}{3} y^{3 / 2}\right|_{x^{4}} ^{x^{2}}\right) \mathrm{d} x=\frac{2}{3} \int_{0}^{1} x^{2}\left(x^{3}-x^{6}\right) \mathrm{d} x \\
& =\left.\frac{2}{3}\left(\frac{x^{6}}{6}-\frac{x^{9}}{9}\right)\right|_{0} ^{1}=\frac{2}{3}\left(\frac{9-6}{54}\right)=\frac{1}{27}
\end{aligned}
$$

ii.

$$
\begin{aligned}
M_{x} & =\iint_{\text {leaf }} y \rho(x, y) \mathrm{d} A=\int_{0}^{1} \int_{y^{1 / 2}}^{y^{1 / 4}} x y^{3 / 2} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{0}^{1} y^{3 / 2}\left(\left.\frac{1}{2} x^{2}\right|_{y^{1 / 2}} ^{y^{1 / 4}}\right) \mathrm{d} y=\frac{1}{2} \int_{0}^{1} y^{3 / 2}\left(y^{1 / 2}-y\right) \mathrm{d} y \\
& =\left.\frac{1}{2}\left(\frac{y^{3}}{3}-\frac{2 y^{7 / 2}}{7}\right)\right|_{0} ^{1}=\frac{1}{2}\left(\frac{7-6}{21}\right)=\frac{1}{42}
\end{aligned}
$$

iii.

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right)=\left(\frac{1 / 27}{1 / 20}, \frac{1 / 42}{1 / 20}\right)=\left(\frac{20}{27}, \frac{10}{21}\right)
$$

(b) The total power is equal to the double integral of the power density.

$$
\begin{aligned}
8 & =\int_{0}^{1} \int_{x^{4}}^{x^{2}} k\left(1-x^{2}\right) \mathrm{d} y \mathrm{~d} x \\
& =\left.\int_{0}^{1} k\left(1-x^{2}\right) y\right|_{x^{4}} ^{x^{2}} \mathrm{~d} x=\int_{0}^{1} k\left(1-x^{2}\right)\left(x^{2}-x^{4}\right) \mathrm{d} x \\
& =k \int_{0}^{1}\left(x^{2}-2 x^{4}+x^{6}\right) \mathrm{d} x=\left.k\left(\frac{x^{3}}{3}-\frac{2 x^{5}}{5}+\frac{x^{7}}{7}\right)\right|_{0} ^{1} \\
& =k\left(\frac{35-42+15}{105}\right)=\frac{8 k}{105} \Longrightarrow k=105
\end{aligned}
$$

5. [2350/071423(13 pts)] Use spherical coordinates to evaluate $\iiint_{\mathcal{E}} z \mathrm{~d} V$ where \mathcal{E} is the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane, below the cone $z=\sqrt{x^{2}+y^{2}}$ and between the planes $y=\frac{\sqrt{3}}{3} x$ and $y=\sqrt{3} x$.

Solution:

In spherical coordinates the sphere is given by $\rho=2$, the cone by $\phi=\frac{\pi}{4}$ and the planes by $\theta=\frac{\pi}{6}$ and $\theta=\frac{\pi}{3}$. Then

$$
\begin{aligned}
\iiint_{\mathcal{E}} z \mathrm{~d} V & =\int_{\pi / 6}^{\pi / 3} \int_{\pi / 4}^{\pi / 2} \int_{0}^{2} \rho \cos \phi\left(\rho^{2} \sin \phi\right) \mathrm{d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& =\left(\int_{\pi / 6}^{\pi / 3} \mathrm{~d} \theta\right)\left(\int_{0}^{2} \rho^{3} \mathrm{~d} \rho\right)\left(\int_{\pi / 4}^{\pi / 2} \sin \phi \cos \phi \mathrm{~d} \phi\right) \\
& =\frac{\pi}{6}\left(\left.\frac{\rho^{4}}{4}\right|_{0} ^{2}\right)\left(\frac{1}{2} \int_{\pi / 4}^{\pi / 2} \sin 2 \phi \mathrm{~d} \phi\right) \\
& =\frac{\pi}{6}(4)\left(-\left.\frac{1}{4} \cos 2 \phi\right|_{\pi / 4} ^{\pi / 2}\right) \\
& =\frac{\pi}{6}
\end{aligned}
$$

