1. [2350/063023 (30 pts)] Penelope the platypus adventures about on the surface of a river, where distances are measured in meters. Suppose the temperature $\left({ }^{\circ} \mathrm{C}\right)$ on the river's surface is given by

$$
T(x, y)=-\left(2 x^{2}-4\right)^{2}+4 y^{2}
$$

(a) [10 pts] Penelope's current location is at $(1,3)$. Platypus risk overheating in Australian summers and can only cool down by immersing themselves in cold water.
i. [5 pts] Find the direction Penelope should travel to reach lower temperatures the fastest.
ii. [5 pts] What is the instantaneous rate of temperature change with respect to distance ($\mathrm{d} T / \mathrm{d} s$) in this direction?
(b) $[20 \mathrm{pts}]$ Penelope is now at the point $(2,-2)$, a location with a comfortable temperature.
i. [6 pts$]$ What is the equation of the level curve for this temperature? Sketch it.
ii. [6 pts] What direction(s) should Penelope travel from this point to remain at this temperature? Report your answer(s) as unit vectors.
iii. [8 pts] If Penelope were swimming along the path $\mathbf{r}(t)=(t+2) \mathbf{i}+\left(t^{2}+2 t-2\right) \mathbf{j}$, what is the instantaneous rate of change of temperature with respect to time (seconds) $(\mathrm{d} T / \mathrm{d} t)$ when she reaches the point $(2,-2)$?

SOLUTION:

(a) i. The direction of maximum decrease in the temperature is $-\nabla T$.

$$
\nabla T(x, y)=\left\langle-8 x\left(2 x^{2}-4\right), 8 y\right\rangle \Longrightarrow \nabla T(1,3)=\langle-8(-2), 24\rangle=\langle 16,24\rangle
$$

Thus Penelope should travel along $-\nabla T(1,3)=\langle-16,-24\rangle$.
ii. The rate of temperature change with respect to distance in this direction is

$$
\begin{aligned}
\left.\frac{\mathrm{d} T}{\mathrm{~d} s}\right|_{(1,3)} & =\nabla T(1,3) \cdot \frac{-\nabla T(1,3)}{\|-\nabla T(1,3)\|}=-\|-\nabla T(1,3)\| \\
& =-\sqrt{16^{2}+24^{2}}=-\sqrt{832}=-\sqrt{8^{2}\left(2^{2}+3^{2}\right)}=-8 \sqrt{13}{ }^{\circ} \mathrm{C} / \mathrm{m}
\end{aligned}
$$

(b) i. $T(2,-2)=-(8-4)^{2}+4(4)=0{ }^{\circ} \mathrm{C}$. Then the level curve is

$$
0=-\left(2 x^{2}-4\right)^{2}+4 y^{2} \Longrightarrow\left(2 x^{2}-4\right)^{2}=4 y^{2} \Longrightarrow y= \pm \frac{1}{2}\left(2 x^{2}-4\right) \Longrightarrow y= \pm\left(x^{2}-2\right)
$$

ii. We need to find unit vector(s), $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$, such that the directional derivative is 0 .

$$
\begin{gathered}
D_{\mathbf{u}} T(2,-2)=\nabla T(2,-2) \cdot\left\langle u_{1}, u_{2}\right\rangle=0 \\
\langle-16(4),-16\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle=0 \\
-64 u_{1}-16 u_{2}=0 \\
4 u_{1}+u_{2}=0
\end{gathered}
$$

One option satisfying this equation is $u_{1}=1, u_{2}=-4$. Thus Penelope could move in the direction $\pm\left\langle\frac{1}{\sqrt{17}}, \frac{-4}{\sqrt{17}}\right\rangle$ to remain at the comfortable temperature.
iii. Penelope will reach the comfortable spot when $t=0$.

$$
\begin{gathered}
\frac{\mathrm{d} T}{\mathrm{~d} t}=\frac{\partial T}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial T}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}=\nabla T \cdot \mathbf{r}^{\prime}(t)=\left\langle-8 x\left(2 x^{2}-4\right), 8 y\right\rangle \cdot\langle 1,2 t+2\rangle \\
\left.\frac{\mathrm{d} T}{\mathrm{~d} t}\right|_{t=0}=\langle-64,-16\rangle \cdot\langle 1,2\rangle=-96^{\circ} \mathrm{C} / \mathrm{sec}
\end{gathered}
$$

2. [2350/063023 (23 pts)] The following parts (a) and (b) are not related.
(a) $[15 \mathrm{pts}]$ Consider

$$
f(x, y)=\frac{y^{2} x^{4}-4 x^{4} y+4 x^{4}}{y-2}
$$

i. [5 pts] What are the domain and range of $f(x, y)$?
ii. [5 pts] Find $\lim _{(x, y) \rightarrow(-2,2)} f(x, y)$ or show that it does not exist.
iii. [5 pts] Is $f(x, y)$ continuous on \mathbb{R}^{2} ? Justify your answer.
(b) [8 pts] Find an equation of the tangent plane to the surface $x y+y z+x z=5$ at the point $(1,2,1)$. Write your answer in the form $a x+b y+c z=d$.

SOLUTION:

(a) i. The domain is $\left\{(x, y) \in \mathbb{R}^{2} \mid y \neq 2\right\}$. The range is \mathbb{R} since f is unbounded (it increases/decreases without bound as $y \rightarrow 2$).
ii. Direct substitution yields the indeterminate form $\frac{0}{0}$. Our next approach is to try algebraic manipulation.

$$
\begin{aligned}
f(x, y) & =\frac{y^{2} x^{4}-4 x^{4} y+4 x^{4}}{y-2} \\
& =\frac{x^{4}\left(y^{2}-4 y+4\right)}{y-2} \\
& =\frac{x^{4}(y-2)^{2}}{y-2} \\
& =x^{4}(y-2)
\end{aligned}
$$

Thus $\lim _{(x, y) \rightarrow(-2,2)} \frac{y^{2} x^{4}-4 x^{4} y+4 x^{4}}{y-2}=\lim _{(x, y) \rightarrow(-2,2)} x^{4}(y-2)=(-2)^{4}(0)=0$
iii. No. The function is not defined when $y=2$ and thus is not continuous when $y=2$. Therefore, it is not continuous on \mathbb{R}^{2}. (Remark: Note that $\lim _{(x, y) \rightarrow\left(x_{0}, 2\right)} f(x, y)=0$ for all x_{0})
(b) The given surface is a level surface of the function $F(x, y, z)=x y+y z+x z$. A normal to the given surface is ∇F and, with the given point, will provide the necessary information to find the equation of the tangent plane.

$$
\begin{gathered}
\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\langle y+z, x+z, y+x\rangle \\
\nabla F(1,2,1)=\langle 3,2,3\rangle \\
3(x-1)+2(y-2)+3(z-1)=0 \\
3 x+2 y+3 z=10
\end{gathered}
$$

3. [2350/063023 (31 pts)] You and your friend Chaplin are on a quest through a forest in search of a magical tome that can solve any math problem for you. A sorceress gave you a clue on its location: it is at the highest point on or within the boundary $3 x^{2}+y^{2}=9$. The elevation in that region is given by

$$
f(x, y)=-4(x-1)^{2}-y^{2}+100
$$

(a) [5 pts] Chaplin questions whether there even is a highest point in this region. Is there any guarantee that you can offer him that there is a highest point in this region? (No calculations please, just write a sentence with any relevant facts/theorems that would convince Chaplin.)
(b) [10 pts] Find and classify all critical points within the boundary.
(c) $[12$ pts $]$ Using Lagrange Multipliers, determine if there are any extrema on the boundary.
(d) [4 pts] Based on the work done above, report the location of the magical item and the elevation at that point.

SOLUTION:

(a) The function $f(x, y)$ describing the elevation is continuous inside and on the given boundary which comprises a closed, bounded set. Thus the Extreme Value Theorem guarantees that a maximum elevation does exist.
(b)

$$
\begin{gathered}
f_{x}=-8(x-1) \quad f_{y}=-2 y \\
0=f_{x}=-8(x-1) \Longrightarrow x=1 \\
0=f_{y}=-2 y \Longrightarrow y=0
\end{gathered}
$$

Thus the only critical point is $(1,0)$. To classify the critical point, we use the Second Derivatives test.

$$
\begin{gathered}
f_{x x}=-8, \quad f_{y y}=-2, \quad f_{x y}=0 \\
D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)=-8(-2)-0^{2}=16
\end{gathered}
$$

$D(1,0)=16>0$ and $f_{x x}=-8<0$ which implies that $f(1,0)=100$ is a local maximum.
(c) The constraint for the Lagrange multiplier method is $g(x, y)=3 x^{2}+y^{2}=9$.

$$
\begin{align*}
\nabla f=\lambda \nabla g \Longrightarrow & \langle-8(x-1),-2 y\rangle=\lambda\langle 6 x, 2 y\rangle \\
& -8(x-1)=\lambda 6 x \tag{1}\\
& -2 y=\lambda 2 y \tag{2}\\
& 3 x^{2}+y^{2}=9 \tag{3}
\end{align*}
$$

Equation (2) can be written as $y(\lambda+1)=0 \Longrightarrow y=0$ or $\lambda=-1$. In the case $y=0, x= \pm \sqrt{3}$ from Eq. (3). In the case $\lambda=-1, x=4$ from Eq. (1) which implies $y^{2}=9-3(16)$ in Eq. (3) which is impossible. Thus the only two critical points on the boundary are $(\sqrt{3}, 0)$ and $(-\sqrt{3}, 0) . f(\sqrt{3}, 0)=-4(\sqrt{3}-1)^{2}+100$ is a maximum on the boundary and $f(-\sqrt{3}, 0)=-4(-\sqrt{3}-1)^{2}+100$ is a minimum on the boundary.
(d) The absolute maximum in the region (the location of the magical tome) is at $(1,0)$ with an elevation 100 .
4. [2350/063023 (16 pts)] The following problems are not related.
(a) [6 pts] Suppose you found the second order Taylor approximation, $T_{2}(x, y)$, centered at $(1,2)$, of a function $g(x, y)$. You also know that throughout \mathbb{R}^{2}

$$
\begin{gathered}
\left|g_{x x}\right| \leq 4 \quad\left|g_{x y}\right| \leq e^{2} \quad\left|g_{y y}\right| \leq 1 \\
\left|g_{x x x}\right| \leq 3 \quad\left|g_{x x y}\right| \leq 1 \quad\left|g_{y y x}\right| \leq 7 \quad\left|g_{y y y}\right| \leq 5
\end{gathered}
$$

You want to use $T_{2}(x, y)$ to estimate the value of $g(x, y)$ when $-3 \leq x-1 \leq 3$ and $-0.2 \leq y-2 \leq 0.2$. What is the maximum error you can expect the approximation to contain?
(b) [10 pts] The volume of the frustum of a right circular cone is given by $V(r, R, h)=\frac{\pi}{3} h\left(R^{2}+R r+r^{2}\right)$, where h is the frustum's height, R is the radius of its base, and r is the radius of its top. The measurements of the frustum are $r=1, R=2, h=3$ inch with a possible error of 0.01 inch in the radius measurements and 0.03 inch in the height measurement. Use differentials to estimate the possible error in the computed volume.

SOLUTION:

(a) For $T_{2}(x, y)$, we need to bound the third order derivatives of $g(x, y)$ on the rectangle, R, given by $|x-1|<3,|y-2|<0.2$; that is, we need

$$
M=\max _{(x, y) \in R}\left\{\left|g_{x x x}\right|,\left|g_{x x y}\right|,\left|g_{y y x}\right|,\left|g_{y y y}\right|\right\}=\max _{(x, y) \in R}\{3,1,7,5\}=7
$$

Then, using the error formula we find

$$
|E(x, y)| \leq \frac{M}{3!}(|x-1|+|y-2|)^{3}=\frac{7}{6}(3.2)^{3}
$$

(b)

$$
\begin{aligned}
\mathrm{d} V & =\frac{\partial V}{\partial r} \mathrm{~d} r+\frac{\partial V}{\partial R} \mathrm{~d} R+\frac{\partial V}{\partial h} \mathrm{~d} h \\
& =\frac{\pi}{3} h(R+2 r) \mathrm{d} r+\frac{\pi}{3} h(2 R+r) \mathrm{d} R+\frac{\pi}{3}\left(R^{2}+R r+r^{2}\right) \mathrm{d} h \\
& =\frac{\pi}{3}(3)[2+2(1)](0.01)+\frac{\pi}{3}(3)[2(2)+1](0.01)+\frac{\pi}{3}\left[2^{2}+(2)(1)+1^{2}\right](0.03) \\
& =\frac{\pi}{100}(4+5+7)=\frac{16 \pi}{100}=\frac{4 \pi}{25} \mathrm{in}^{3}
\end{aligned}
$$

