- This exam is worth 100 points and has 4 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one $8.5 " \times 11 "$ crib sheet with writing on one side.
- Remote students are allowed use of a computer during the exam only for a live video of their hands and face and to view the exam in the Zoom meeting.

0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAIl ure to include this statement and your Signature MAY RESULT IN A PENALTY.
1. [2350/063023 (30 pts)] Penelope the platypus adventures about on the surface of a river, where distances are measured in meters. Suppose the temperature $\left({ }^{\circ} \mathrm{C}\right)$ on the river's surface is given by

$$
T(x, y)=-\left(2 x^{2}-4\right)^{2}+4 y^{2}
$$

(a) [10 pts] Penelope's current location is at $(1,3)$. Platypus risk overheating in Australian summers and can only cool down by immersing themselves in cold water.
i. [5 pts] Find the direction Penelope should travel to reach lower temperatures the fastest.
ii. [5 pts] What is the instantaneous rate of temperature change with respect to distance $(\mathrm{d} T / \mathrm{d} s)$ in this direction?
(b) [20 pts] Penelope is now at the point $(2,-2)$, a location with a comfortable temperature.
i. [6 pts$]$ What is the equation of the level curve for this temperature? Sketch it.
ii. [6 pts] What direction(s) should Penelope travel from this point to remain at this temperature? Report your answer(s) as unit vectors.
iii. [8 pts] If Penelope were swimming along the path $\mathbf{r}(t)=(t+2) \mathbf{i}+\left(t^{2}+2 t-2\right) \mathbf{j}$, what is the instantaneous rate of change of temperature with respect to time (seconds) $(\mathrm{d} T / \mathrm{d} t)$ when she reaches the point $(2,-2)$?
2. [2350/063023 (23 pts)] The following parts (a) and (b) are not related.
(a) $[15 \mathrm{pts}]$ Consider

$$
f(x, y)=\frac{y^{2} x^{4}-4 x^{4} y+4 x^{4}}{y-2}
$$

i. [5 pts] What are the domain and range of $f(x, y)$?
ii. [5 pts] Find $\lim _{(x, y) \rightarrow(-2,2)} f(x, y)$ or show that it does not exist.
iii. [5 pts] Is $f(x, y)$ continuous on \mathbb{R}^{2} ? Justify your answer.
(b) [8 pts] Find an equation of the tangent plane to the surface $x y+y z+x z=5$ at the point $(1,2,1)$. Write your answer in the form $a x+b y+c z=d$.
3. [2350/063023 (31 pts)] You and your friend Chaplin are on a quest through a forest in search of a magical tome that can solve any math problem for you. A sorceress gave you a clue on its location: it is at the highest point on or within the boundary $3 x^{2}+y^{2}=9$. The elevation in that region is given by

$$
f(x, y)=-4(x-1)^{2}-y^{2}+100
$$

(a) [5 pts] Chaplin questions whether there even is a highest point in this region. Is there any guarantee that you can offer him that there is a highest point in this region? (No calculations please, just write a sentence with any relevant facts/theorems that would convince Chaplin.)
(b) [10 pts] Find and classify all critical points within the boundary.
(c) [12 pts] Using Lagrange Multipliers, determine if there are any extrema on the boundary.
(d) [4 pts] Based on the work done above, report the location of the magical item and the elevation at that point.
4. [2350/063023 (16 pts)] The following problems are not related.
(a) [6 pts] Suppose you found the second order Taylor approximation, $T_{2}(x, y)$, centered at $(1,2)$, of a function $g(x, y)$. You also know that throughout \mathbb{R}^{2}

$$
\begin{gathered}
\left|g_{x x}\right| \leq 4 \quad\left|g_{x y}\right| \leq e^{2} \quad\left|g_{y y}\right| \leq 1 \\
\left|g_{x x x}\right| \leq 3 \quad\left|g_{x x y}\right| \leq 1 \quad\left|g_{y y x}\right| \leq 7 \quad\left|g_{y y y}\right| \leq 5
\end{gathered}
$$

You want to use $T_{2}(x, y)$ to estimate the value of $g(x, y)$ when $-3 \leq x-1 \leq 3$ and $-0.2 \leq y-2 \leq 0.2$. What is the maximum error you can expect the approximation to contain?
(b) [10 pts] The volume of the frustum of a right circular cone is given by $V(r, R, h)=\frac{\pi}{3} h\left(R^{2}+R r+r^{2}\right)$, where h is the frustum's height, R is the radius of its base, and r is the radius of its top. The measurements of the frustum are $r=1, R=2, h=3$ inch with a possible error of 0.01 inch in the radius measurements and 0.03 inch in the height measurement. Use differentials to estimate the possible error in the computed volume.

