
APPM 2350 Final Exam Summer 2022

1. (32 pts) Suppose the density of the surface z = 1− x2 is δ = |x|y g/cm2 and consider the vector field

F = 〈3x+ cos y, 2y + sin z, ex + 5z〉

(a) Find the mass of the part of the surface lying above the region in the xy-plane between y = 0 and y = 2.

(b) Find the outward flux of F through the closed surface enclosing the region below z = 1 − x2, above the
xy-plane and between y = 0 and y = 2.

Solution:

(a)

g(x, y, z) = x2 + z =⇒ ∇g = 〈2x, 0, 1〉 =⇒ ‖∇g‖ =
√
4x2 + 1

Project surface onto the xy-plane gives p = k, integration region− 1 ≤ x ≤ 1, 0 ≤ y ≤ 2 and |∇g · p| = 1
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(b) The surface S and the regionW it encloses satisfy the hypotheses of Gauss’ (Divergence) Theorem with

∇ · F =
∂

∂x
(3x+ cos y) +

∂

∂y
(2y + sin z) +

∂

∂z
(ex + 5z) = 3 + 2 + 5 = 10

Flux =

∫∫
S
F · dS =

∫∫∫
W
∇ · F dV =
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(
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)
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2. (16 pts) Find the area under the graph of z = 100(x2 + 2y2) lying above the second quadrant portion of the curve
x2 + y2 = 4.

Solution: The area is given by
∫
C
f(x, y) ds where f(x, y) = 100(x2 + 2y2). C can be parameterized by

r(t) = 2 cos t i+ 2 sin t j, π/2 ≤ t ≤ π =⇒ r′(t) = −2 sin t i+ 2 cos t j =⇒ ‖r′(t)‖ = 2

Thus

Area =

∫
C
100(x2 + 2y2) ds =

∫ π
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)
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) ∣∣∣∣∣
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3. (16 pts) I am doing laps around the unit circle (counterclockwise) in the presence of the force field

F =
〈
Axy −By3, 4y + 3x2 − 3xy2

〉



(a) After having gone from (1, 0) to (0, 1), I am already getting tired from all of the work I’ve done. A friend
standing nearby tells me to chill because when I get back to (1, 0) I will have done no work at all. What are A
and B? Briefly explain.

(b) If I go around the circle too much, I’ll get dizzy so my friend tells me to go from (−1, 0) to (3,−2) along the
path y =

√
x+ 1(x− 2)300(x− 4)301 instead. How much work will I do walking on that path?

Solution:

(a) The fact that no work is done when traversing a closed path implies that the vector field is conservative so that

∂

∂x

(
4y + 3x2 − 3xy2

)
=

∂

∂y

(
Axy −By3

)
=⇒ 6x− 3y2 = Ax− 3By2 =⇒ A = 6, B = 1

(b) Parameterizing the given path would not be a pleasant experience but that is not necessary. There are two
ways to handle this. First, since the vector field is conservative, line integrals are path independent so we
could pick another path between the given points (perhaps a line segment). This may still be too much work
(no pun intended). The other approach is to find a potential function and use the fundamental theorem for line
integrals to compute the work. To that end,

∂f

∂x
= 6xy − y3 =⇒ f(x, y) =

∫ (
6xy − y3

)
dx = 3x2y − xy3 + g(y)

Then

∂f

∂y
= 3x2 − 3xy2 +

dg

dy
= 4y + 3x2 − 3xy2 =⇒ dg

dy
= 4y =⇒ g(y) =

∫
4y dy =⇒ g(y) = 2y2 + c

So the potential function for F is f(x, y) = 3x2y − xy3 + 2y2 + c and the work is then∫ (3,−2)

(−1,0)
F · dr = f(3,−2)− f(−1, 0) = 3(9)(−2)− 3(−8) + 2(4) + c− (0 + c) = −22

4. (20 pts) Find the circulation of V(x, y, z) = i+(x+ yz) j+
(
xy − cos2

√
z
)
k around the closed path consisting of

the straight line segments connecting the points (1, 0, 0), (0, 0, 2), (0, 2, 0) and (1, 0, 0), in that order, by completely
setting up an appropriate surface integral. Do not evaluate your integral, but your final answer should include a
fully simplified integrand, correct bounds, etc.

Solution:
The path is shown in the following figure.
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We will use Stokes’ Theorem to find the circulation. The surface over which we will integrate is given by the plane
in which the path lies, namely,

x

1
+
y

2
+
z

2
= 1 =⇒ 2x+ y + z = 2 =⇒ g(x, y, z) = 2x+ y + z and ∇g = 2 i+ j+ k



(This was easily obtained since we knew where the plane intersects the coordinate axes. A point and two vectors in
the plane could also have been used to find the plane’s equation).

To obtain the orientation of the surface induced by the orientation of its boundary requires the use of−∇g. Project-
ing the surface onto the xy-plane gives p = k and |∇g · p| = 1 with the area of integration

R =
{
(x, y, ) ∈ R2

∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x
}

Note that the surface could have been projected onto the xz- or yz-plane.

We need the curl of V, given as

∇×V =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
1 x+ yz xy − cos2

√
z

∣∣∣∣∣∣ = (x− y) i− y j+ k

Then

Circulation =

∮
C
V · dr =

∫∫
S
∇×V · dS =

∫∫
R
(∇×V) · −∇g

|∇g · p|
dA

=

∫∫
R
[(x− y) i− y j+ k] · (−2 i− j− k)

1
dA

=

∫ 1

0

∫ −2x+2

0

(−2x+ 3y − 1) dy dx

5. (16 pts) Use Green’s Theorem to evaluate
∮
C
−y3 dx+

(
x3 +

√
y3 + 1

)
dy. C is the closed counterclockwise path

consisting of the bottom half of the unit circle and the portion of the x-axis with −1 ≤ x ≤ 1.

Solution: The path and region are shown in the following figure.
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P (x, y) = −y3 =⇒ ∂P

∂y
= −3y2 and Q(x, y) = x3 +

√
y3 + 1 =⇒ ∂Q

∂x
= 3x2

Thus ∮
C
−y3 dx+

(
x3 +

√
y3 + 1

)
dy =

∫∫
D

(
3x2 + 3y2

)
dA

polar
=

coords
3

∫ 2π

π

∫ 1

0

r3 dr dθ =
3π

4

Note that this could also be considered using the flux/divergence/normal form of Green’s Theorem with

P (x, y) = x3 +
√
y3 + 1 and Q(x, y) = y3

.



END OF EXAM


