This exam has 5 problems. Show all your work and simplify your answers. Answers with missing or insufficient justification will receive no points. You are allowed one $8.5 \times 11$-in page of notes (ONE side). You may NOT use a calculator, smartphone, smartwatch, the Internet or any other electronic device.

1. (32 pts) Suppose the density of the surface $z=1-x^{2}$ is $\delta=|x| y \mathrm{~g} / \mathrm{cm}^{2}$ and consider the vector field

$$
\mathbf{F}=\left\langle 3 x+\cos y, 2 y+\sin z, e^{x}+5 z\right\rangle
$$

(a) Find the mass of the part of the surface lying above the region in the $x y$-plane between $y=0$ and $y=2$.
(b) Find the outward flux of $\mathbf{F}$ through the closed surface enclosing the region below $z=1-x^{2}$, above the $x y$-plane and between $y=0$ and $y=2$.
2. ( 16 pts ) Find the area under the graph of $z=100\left(x^{2}+2 y^{2}\right)$ lying above the second quadrant portion of the curve $x^{2}+y^{2}=4$.
3. (16 pts) I am doing laps around the unit circle (counterclockwise) in the presence of the force field

$$
\mathbf{F}=\left\langle A x y-B y^{3}, 4 y+3 x^{2}-3 x y^{2}\right\rangle
$$

(a) After having gone from $(1,0)$ to $(0,1)$, I am already getting tired from all of the work I've done. A friend standing nearby tells me to chill because when I get back to $(1,0)$ I will have done no work at all. What are $A$ and $B$ ? Briefly explain.
(b) If I go around the circle too much, I'll get dizzy so my friend tells me to go from $(-1,0)$ to $(3,-2)$ along the path $y=\sqrt{x+1}(x-2)^{300}(x-4)^{301}$ instead. How much work will I do walking on that path?
4. (20 pts) Find the circulation of $\mathbf{V}(x, y, z)=\mathbf{i}+(x+y z) \mathbf{j}+\left(x y-\cos ^{2} \sqrt{z}\right) \mathbf{k}$ around the closed path consisting of the straight line segments connecting the points $(1,0,0),(0,0,2),(0,2,0)$ and $(1,0,0)$, in that order, by completely setting up an appropriate surface integral. Do not evaluate your integral, but your final answer should include a fully simplified integrand, correct bounds, etc.
5. (16 pts) Use Green's Theorem to evaluate $\oint_{\mathcal{C}}-y^{3} \mathrm{~d} x+\left(x^{3}+\sqrt{y^{3}+1}\right) \mathrm{d} y . \mathcal{C}$ is the closed counterclockwise path consisting of the bottom half of the unit circle and the portion of the $x$-axis with $-1 \leq x \leq 1$.

## END OF EXAM

