## APPM 2350—Exam 2

Friday, June 24th 1pm-2:35pm 2022
This exam has 4 problems. Show all your work and simplify your answers. Answers with missing or insufficient justification will receive no points. You are allowed one $8.5 \times 11$-in page of notes (ONE side). You may NOT use a calculator, smartphone, smartwatch, the Internet or any other electronic device.

Problem 1 (30 pts)
Consider the function

$$
f(x, y)=\frac{\sqrt{x}}{y}
$$

(a) Graph the level curve of $f(x, y)$ that passes through the point $(0,2)$. Label the value of $f$ along the curve.
(b) On the same graph as part (a) graph the level curve where $f(x, y)=1$. Label the value of $f$ along this curve.
(c) On the same graph as part (a), graph one level curve where $f(x, y)<0$. Label the value of $f$ along this curve.
(d) At the point $(1,1)$, give a vector that points in the direction in the domain where this function decreases fastest.
(e) Sketch the vector you found in part (d) starting at $(1,1)$ on your graph from part (a).
(f) Use a $2 n$ d order (i.e. quadratic) Taylor approximation centered at $(1,1)$ to approximate $\frac{\sqrt{1.8}}{1.5}$ You can leave your answer as an unsimplified sum and/or difference of terms.

Problem 2 (22 pts) The temperature (in degrees Farenheit) in a region in space is given by

$$
T(x, y, z)=\frac{1}{2} x^{2}+\frac{1}{2} x y z
$$

A particle is moving in this region and its position at time $t$ is given by

$$
\overrightarrow{\mathbf{r}}(t)=2 \cos (\pi t) \mathbf{i}+e^{\left(9-t^{2}\right)} \mathbf{j}-2 t \mathbf{k}
$$

where time is measured in seconds and distance in meters.
(a) Use the chain rule to determine how fast the temperature experienced by the particle is changing in degrees Farenheit per second at the point $(x, y, z)=(-2,1,-6)$.
(b) How fast is the temperature experienced by the particle changing in degrees Farenheit per meter at the point $(x, y, z)=(-2,1,-6)$ ? (i.e. find the rate of change of the temperature with respect to distance in the direction the particle is moving at the point $(x, y, z)=(-2,1,-6))$.

Problem 3 (28 pts)
The following parts are not related:
(a) Find and classify all critical points of

$$
g(x, y)=x^{4}+y^{4}-4 x y
$$

(b) An airplane moves in a trajectory given by

$$
\overrightarrow{\mathbf{r}}(t)=4 t \mathbf{i}+t \mathbf{j}+t^{2} \mathbf{k} \quad t \geq 0
$$

Given this trajectory, it will intersect the following surface twice:

$$
z=2 x+2 y-y^{2}-8
$$

Determine the tangent plane to the surface at the location where the airplane intersects the surface for a second time. Give your answer in standard (i.e. linear) form.

Problem 4 (20 pts)
A mother puts her child on an amusement park ride that takes the child along a path in the $x y$-plane described by the equation $x^{2}-2 x=4 y-y^{2}$. While the child is on the ride, the mother stands at the location $(x, y)=(0,0)$.
(a) Use Lagrange multipliers to find the minimum and maximum distances from the mother to the child during the ride.
(b) Give the $(x, y)$ coordinates of the child at the minimum and maximum distances.

