
APPM 2350 Final Exam Spring 2024

1. [2350/050724 (16 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given. Please write
your answers in a single column separate from any work you do to arrive at the answer.

(a) Given any three nonzero vectors u,v,w, if u× v ×w = 0, then the vectors must always all lie in the same plane.

(b) The torsion, τ =
[r′(t)× r′′(t)] · r′′′(t)

||r′(t)× r′′(t)||2
, of the curve r(t) = ⟨sin t, 2, cos t⟩ is τ = 2.

(c) The line with symmetric equations x = −0.5y = z never intersects the plane x+ y + z = 1

(d)
1

4
x2 − 2x+ y2 − 10y − z2 + 39 = 0 is a hyperboloid of two sheets.

(e) For any vectors A,B, the operation ∇× [∇× (A×B)] is well-defined.

(f) The direction of motion of a particle moving on the path r(t) = (1− 3et) i+(2− 2et) j+(3− et)k, t ∈ R, is always changing
(the normal component of the acceleration is never 0) but its speed is constant (its tangential acceleration is 0).

(g) If g(x, y)→1 when (x, y)→(0, 0) along the y-axis and g(x, y)→1 when (x, y)→(0, 0) along the x-axis, and g(0, 0) = 1, then
g(x, y) must be continuous at (0, 0).

(h) The linear Taylor polynomial of f(x, y) = e−x4−y4

centered at (1, 1) is T1(x, y) = e−2(9− 4x− 4y).

SOLUTION:

(a) FALSE Consider i× j× k.

(b) FALSE Since the curve lies in a plane, its torsion is 0.

r′(t) = ⟨cos t, 0,− sin t⟩ r′′(t) = ⟨− sin t, 0,− cos t⟩ r′′′(t) = ⟨− cos t, 0, sin t⟩

r′(t)× r′′(t) =

∣∣∣∣∣∣
i j k

cos t 0 − sin t
− sin t 0 − cos t

∣∣∣∣∣∣ = j

τ =
[r′(t)× r′′(t)] · r′′′(t)

||r′(t)× r′′(t)||2
=

⟨0, 1, 0⟩ · ⟨− cos t, 0, sin t⟩
∥j∥2

=
0

1
= 0

(c) TRUE Alternative 1: Substituting the equation of the line into the equation of the plane yields −0.5y + y − 0.5y = 0 ̸= 1.
Alternative 2: The direction vector of the line is ⟨1,−2, 1⟩ and the normal vector to the plane is ⟨1, 1, 1⟩. The dot product of
these two vectors is zero, implying that the line is parallel to the plane and thus never intersects it.

(d) TRUE Complete the square:

1

4

(
x2 − 8x+ 16− 16

)
+ y2 − 10y + 25− 25− z2 + 39 = 0 =⇒

(
x− 4

2

)2

+ (y − 5)2 − z2 = −10

(e) TRUE A×B is a vector. ∇× (A×B) yields another vector which possesses a curl, ∇× [∇× (A×B)].

(f) FALSE The path is a straight line, r(t) = ⟨1, 2, 3⟩+ et⟨−3,−2,−1⟩, which has no curvature (κ = 0) and thus particles never
change direction

(
aN = κ∥v∥2 = 0

)
. The speed on the path is

∥v∥ = ∥r′(t)∥ =

√
(−3et)

2
+ (−2et)

2
+ (−et)

2
=

√
14et =⇒ aT =

d∥v∥
dt

=
√
14et

which is always positive, implying that the particle’s speed is always increasing.

(g) FALSE The fact that g(x, y)→ 1 as (x, y) → (0, 0) along two different paths does not imply that lim
(x,y)→(0,0)

g(x, y) = 1 (or

that the limit even exists) and thus we cannot guarantee anything about the continuity of g(x, y) at (0, 0).

(h) TRUE

fx(x, y) = −4x3e−x4−y4

=⇒ fx(1, 1) = −4e−2 fy(x, y) = −4y3e−x4−y4

=⇒ fy(1, 1) = −4e−2

T1(x, y) = e−2 − 4e−2(x− 1)− 4e−2(y − 1) = e−2 (9− 4x− 4y)

■



2. [2350/050724 (30 pts)] Consider the triangular region, D, with boundary, ∂D, given by x = 1, y = 0, y = x, and the vector field
F = 3(x− 1)2y i+ (x− 1)y3 j.

(a) (15 pts) Without using any Calculus 3 theorems, directly compute the circulation of F along ∂D with clockwise orientation.

(b) (15 pts) Use Green’s Theorem to compute the outward flux of F through ∂D.

SOLUTION:

(a) The boundary, ∂D, is piecewise smooth so computing the circulation requires three line integrals. However, the vector field
vanishes on x = 1 and y = 0 so we only need to compute the line integral along y = x, which we denote as C. We parameterize
this as x = t, y = t, 0 ≤ t ≤ 1. Then dx = dy = dt and

Circulation =

∮
∂D

3(x− 1)2y dx+ (x− 1)y3 dy =

∫
C
3(x− 1)2y dx+ (x− 1)y3 dy

=

∫ 1

0

[
3(t− 1)2t+ (t− 1)t3

]
dt =

∫ 1

0

[
3t
(
t2 − 2t+ 1

)
+ t4 − t3

]
dt

=

∫ 1

0

(
t4 + 2t3 − 6t2 + 3t

)
dt =

(
t5

5
+

t4

2
− 2t3 +

3t2

2

) ∣∣∣∣∣
1

0

=
1

5
+

1

2
− 2 +

3

2
=

1

5

Alternatively, r(t) = ⟨t, t⟩, 0 ≤ t ≤ 1, r′(t) = ⟨1, 1⟩, F[r(t)] =
〈
3t(t− 1)2, t3(t− 1)

〉
, F[r(t)] · r′(t) = t4 + 2t3 − 6t2 + 3t

and

Circulation =

∮
∂D

F · dr =

∫
C
F · dr =

∫ 1

0

(
t4 + 2t3 − 6t2 + 3t

)
dt =

1

5

(b) Using Green’s Theorem we have

Flux =

∮
∂D

F · nds =

∫∫
D
∇ · F dA

=

∫ 1

0

∫ x

0

[
6(x− 1)y + 3(x− 1)y2

]
dy dx =

∫ 1

0

∫ x

0

(x− 1)
(
6y + 3y2

)
dy dx

=

∫ 1

0

(x− 1)
[(
3y2 + y3

)] ∣∣∣x
0
dx =

∫ 1

0

[
(x− 1)

(
3x2 + x3

)]
dx

=

∫ 1

0

(
x4 + 2x3 +−3x2

)
dx =

(
x5

5
+

x4

2
− x3

) ∣∣∣∣∣
1

0

=

(
1

5
+

1

2
− 1

)
= − 3

10

■

3. [2350/050724 (30 pts)] Consider the function f(x, y) = x4 + y4 − 2x2 − 4y

(a) (11 pts) Suppose you are standing on the surface with x = 2, y = −1.
i. (2 pts) What is the distance to the xy-plane from your position?

ii. (2 pts) Is the xy-plane above or below you?

iii. (7 pts) Find a unit vector in the xy-plane showing the direction you would need to move to follow the level curve that passes
through your x, y coordinates.

(b) (7 pts) Suppose you are walking on the surface along a path whose projection on the xy-plane is r(t) =
(
4t− 3

2

)
i + 2t j. Find

the rate of change with respect to time of your z-coordinate when your path passes through the point (x, y, z) =
(
− 1

2 ,
1
2 ,−

19
8

)
.

(c) (12 pts) Find and classify all critical points of the function.

SOLUTION:

(a) i. f(2,−1) = 24 + (−1)4 − 2(2)2 − 4(−1) = 13

ii. Since 13 > 0 the xy-plane is below you.

iii. Following a level curve means the rate of change of f(x, y) with respect to distance, the directional derivative, is 0. Let
u = ⟨u1, u2⟩ be the unit vector we seek.

fx = 4x3 − 4x fy = 4y3 − 4

df

ds

∣∣∣
(2,−1)

= Duf(2,−1) = ∇f(2,−1) · u = fx(2,−1)u1 + fy(2,−1)u2 = 24u1 − 8u2 = 0 =⇒ 3u1 = u2



With u1 = 1, u2 = 3. A unit vector that will satisfy the given condition is u = ± 1√
10

⟨1, 3⟩

(b) You arrive at the point in question when t = 1
4 . We also have r′ (t) = ⟨4, 2⟩. Using the chain rule,

dz

dt

∣∣∣
t= 1

4

= ∇f(− 1
2 ,

1
2 ) · r

′ ( 1
4

)
=
〈
4
(
− 1

2

)3 − 4
(
− 1

2

)
, 4
(
1
2

)3 − 4
〉
· ⟨4, 2⟩ =

〈
3
2 ,−

7
2

〉
· ⟨4, 2⟩ = −1

(c) Using the gradient equations from part (a)iii, we have

4x3 − 4x = 4x
(
x2 − 1

)
= 4x(x+ 1)(x− 1) = 0 =⇒ x = −1, 0, 1

4y3 − 4 = 0 =⇒ y = 1

So the critical points are (−1, 1), (0, 1), (1, 1). To classify them we use the Second Derivatives Test.

fxx = 12x2 − 4 fxy = 0 fyy = 12y2 D(x, y) = 144x2y2 − 48y2

D(−1, 1) = 144− 48 = 96 > 0, fyy(−1, 1) = 12 > 0 =⇒ f(−1, 1) is a local minimum

D(0, 1) = −48 < 0 =⇒ (0, 1) is a saddle point

D(1, 1) = 144− 48 = 96 > 0, fyy(1, 1) = 12 > 0 =⇒ f(1, 1) is a local minimum

■

4. [2350/050724 (20 pts)] A butterfly of the species Infinitus spectacularis has been tagged with a radio receiver that measures the amount of
work it does when flying around the first octant. The vector field in which the butterfly is flying is

F = [yexy ln(yz)− z sin(xz)] i+

[
exy

y
+ xexy ln(yz)

]
j+

[
exy

z
− x sin(xz) + 3z2

]
k

Biologist records over time indicate that the work done by the butterfly for every closed path it flies is always zero. How much work
is done by the butterfly if it flies along the straight line path from (1, 1, 1) to

(
1
2 , 4, 2

)
?

SOLUTION:
Since the work done on every closed path is zero, the vector field is conservative, so a potential function f exists such that F = ∇f .

∂f

∂x
= yexy ln(yz)− z sin(xz) =⇒ f(x, y, z) =

∫
[yexy ln(yz)− z sin(xz)] dx = exy ln(yz) + cos(xz) + g(y, z)

∂f

∂y
=

exy

y
+ xexy ln(yz) +

∂g

∂y
=

exy

y
+ xexy ln(yz) =⇒ ∂g

∂y
= 0 =⇒ g(y, z) = h(z)

=⇒ f(x, y, z) = exy ln(yz) + cos(xz) + h(z)

∂f

∂z
=

exy

z
− x sin(xz) +

dh

dz
=

exy

z
− x sin(xz) + 3z2 =⇒ dh

dz
= 3z2 =⇒ h(z) = z3 + c

f(x, y, z) = exy ln(yz) + cos(xz) + z3 + c

Now use the fundamental theorem of line integrals to find the work

Work =

∫
C
F · dr =

∫ ( 1
2 ,4,2)

(1,1,1)

∇f · dr = f

(
1

2
, 4, 2

)
− f(1, 1, 1)

= e2 ln 8 + cos 1 + 8− (e ln 1 + cos 1 + 1) = e2 ln 8 + 7 = 3e2 ln 2 + 7

■

5. [2350/050724 (34 pts)] Let W be the solid bounded by the planes x = 0, y = 0, z = 2 and the portion of 2z = x2 + y2 above the
fourth quadrant, and let ∂W denote its boundary. We will be considering the vector field E =

〈
x2y, xy2, xy(z − 2)

〉
. The identity

sin 2x = 2 sinx cosx might be helpful.

(a) (4 pts) Briefly explain why computing the flux of E through ∂W requires evaluating only a single nontrivial integral.

(b) (15 pts) Find the outward flux of E through ∂W by direct calculation.

(c) (15 pts) Use an important Calculus 3 theorem to compute the outward flux of E through ∂W another way.



SOLUTION:

(a) E = 0 on the planes, x = 0, y = 0. On the plane z = 2, the vector field has no k-component. In all cases E · n = 0 and thus
there is no flux through those planes. Consequently, we only need to compute the flux through the paraboloid via a nontrivial
integral to find the flux through all of ∂W .

(b) We find the flux through the portion of the circular paraboloid, S, by projecting it onto the xy-plane. Then the region of
integration, R, is the fourth quadrant portion of the disk of radius 2, p = k, g(x, y, z) = x2 + y2 − 2z, ∇g = ⟨2x, 2y,−2⟩ and
|∇g · p| = 2. Outward flux corresponds to a downward pointing vector so we use +∇g.

E · ∇g

|∇g · p|
=
〈
x2y, xy2, xy(z − 2)

〉
· ⟨2x, 2y,−2⟩

2

=
1

2

[
2x3y + 2xy3 − 2xy(z − 2)

]
= xy

(
x2 + y2

)
− xy(z − 2) (eliminate z using the surface)

= xy
(
x2 + y2

)
− xy

[
1

2

(
x2 + y2

)
− 2

]
=

1

2
xy
(
x2 + y2

)
+ 2xy =

1

2
xy
[(
x2 + y2

)
+ 4
]

Since the flux through the planes is zero, we have

Flux =

∫∫
∂W

E · ndS =

∫∫
S
E · ndS =

∫∫
R

1

2
xy
[(
x2 + y2

)
+ 4
]
dA (switch to polar coordinates)

=
1

2

∫ 2π

3π/2

∫ 2

0

(r sin θ)(r cos θ)
(
r2 + 4

)
r dr dθ

=
1

2

(
1

2

∫ 2π

3π/2

sin 2θ

)[∫ 2

0

(
r5 + 4r3

)
dr

]

=
1

2

−1

4
cos 2θ

∣∣∣2π
3π/2

(
r6

6
+ r4

) ∣∣∣∣∣
2

0

 = −1

8
[1− (−1)]

[
26

6
+ 16

]

= −1

4

(
32

3
+

48

3

)
= −20

3

(c) Use Gauss’ Divergence theorem.

Flux =

∫∫∫
W

∇ ·EdV

=

∫∫∫
W

(2xy + 2xy + xy) dV =

∫∫∫
W

5xy dV (use cylindrical coordinates)

=

∫ 2π

3π/2

∫ 2

0

∫ 2

r2/2

5(r cos θ)(r sin θ) r dz dr dθ =
5

2

∫ 2π

3π/2

∫ 2

0

∫ 2

r2/2

r3 sin 2θ dz dr dθ

=
5

2

∫ 2π

3π/2

∫ 2

0

r3 sin 2θ z
∣∣∣2
r2/2

dr dθ =
5

2

∫ 2π

3π/2

∫ 2

0

r3 sin 2θ

(
2− r2

2

)
dr dθ

=
5

2

(∫ 2π

3π/2

sin 2θ dθ

)(
r4

2
− r6

12

) ∣∣∣∣∣
2

0

= −5

4
cos 2θ

∣∣∣2π
3π/2

(
8− 16

3

)

= −5

4
[1− (−1)]

(
8

3

)
= −20

3

■



6. [2350/050724 (20 pts)] Use Stokes theorem to evaluate
∫
∂S

xdx + (x− 2yz) dy +
(
x2 + z4

)
dz. ∂S and its orientation is shown in the

figure and consists of two semicircles, x2 + y2 = 1 and x2 + z2 = 1, lying on the unit sphere. A portion of the sphere is shown as the
shaded region.

−1
1

−1

1

1
∂S

x y

z

SOLUTION:

Let S be the portion of the unit sphere whose boundary is ∂S. Then we need to compute
∫∫

S
∇× F · ndS where

F = ⟨x, x− 2yz, x2 + z4⟩.

∇× F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

x x− 2yz x2 + z4

∣∣∣∣∣∣∣ = 2y i− 2x j+ k

The surface is g(x, y, z) = x2 + y2 + z2 =⇒ ∇g = ⟨2x, 2y, 2z⟩. Project onto the xy-plane so that p = k =⇒ |∇g ·p| = 2z since
z ≥ 0. The region of integration, R, is the portion of the unit disk where y ≥ 0. Given the orientation of the boundary of the surface,
we choose +∇g. Then

∇× F · +∇g

|∇g · p|
= ⟨2y,−2x, 1⟩ · ⟨2x, 2y, 2z⟩

2z
= 1

Thus, ∫
∂S

x dx+ (x− 2yz) dy +
(
x2 + z4

)
dz =

∫∫
S
∇× F · n dS =

∫∫
R
1 dA =

∫∫
R
dA = area(R) =

π

2

Alternatively, one could evaluate two surface integrals, one using the half-disk lying in the xz-plane, S1, and the other half-disk lying
in the xy-plane, S2, since these share the same boundary as the portion of the sphere used above. Then∫

∂S
x dx+ (x− 2yz) dy +

(
x2 + z4

)
dz =

∫∫
S1

∇× F · n1 dS +

∫∫
S2

∇× F · n2 dS

S1 : g(x, y, z) = y =⇒ ∇g = j project onto xz-plane so that p = j =⇒ |∇g · p| = 1

∇× F · +∇g

|∇g · p|
= ⟨2y,−2x, 1⟩ · ⟨0, 1, 0⟩ = −2x

∫∫
S1

∇× F · n1 dS =

∫ 1

−1

∫ √
1−x2

0

−2xdz dx = −2

∫ 1

−1

x
√

1− x2 dx = 0 (odd integrand)

S2 : g(x, y, z) = z =⇒ ∇g = k project onto xy-plane so that p = k =⇒ |∇g · p| = 1

∇× F · +∇g

|∇g · p|
= ⟨2y,−2x, 1⟩ · ⟨0, 0, 1⟩ = 1

∫∫
S2

∇× F · n2 dS =

∫ 1

−1

∫ √
1−x2

0

1 dy dx = area semi-circle of radius 1 =
π

2

■


