1. [2350/021523 (15 pts)] Han Solo and Chewbacca are piloting the Millennium Falcon along the path given by

$$
\mathbf{r}(t)=\cos (\pi t) \mathbf{i}+\sin (\pi t) \mathbf{j}+\left(4 t-t^{2}\right) \mathbf{k}, \quad t \geq 0
$$

When $t=3$, Chewy fires a laser beam from the front of the ship that travels forward in a straight line. Find the coordinates of the point where the laser beam penetrates the $x y$-plane.

SOLUTION:

The laser beam follows the tangent line. To find the equation of the tangent line, we need a point on the tangent line and its direction. When $t=3$, the fighter is at $\mathbf{r}(3)=\cos 3 \pi \mathbf{i}+\sin 3 \pi \mathbf{j}+\left[4(3)-3^{2}\right] \mathbf{k}=-\mathbf{i}+3 \mathbf{k}$, so a point on the curve and on the tangent line is $(-1,0,3)$.
The velocity vector is $\left.\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=-\pi \sin (\pi t) \mathbf{i}+\pi \cos (\pi t) \mathbf{j}+(4-2 t)\right) \mathbf{k}$ and when $t=3$ is $\mathbf{v}(3)=-\pi \sin 3 \pi \mathbf{i}+\pi \cos 3 \pi \mathbf{j}+$ $[4-2(3)] \mathbf{k}=-\pi \mathbf{j}-2 \mathbf{k}$. This gives the direction of the tangent line, so its equation is

$$
\mathbf{L}(s)=\langle-1,0,3\rangle+s\langle 0,-\pi,-2\rangle=\langle-1,-\pi s, 3-2 s\rangle, \quad-\infty<s<\infty
$$

This line intersects the $x y$-plane when its z-coordinate vanishes, which occurs if $3-2 s=0 \Longrightarrow s=\frac{3}{2}$. The laser intersects the $x y$-plane at the point $\left(-1,-\frac{3 \pi}{2}, 0\right)$.
2. [2350/021523 (12 pts)] Consider the equation $-\frac{1}{4} z^{2}-8 y^{2}+x^{2}+2 z-20=0$
(a) $[4 \mathrm{pts}]$ Name the surface, providing justification for your answer.
(b) [4 pts] Does the surface intersect the $y z$-plane? Justify your answer.
(c) [4 pts] Name the conic section of the trace when $x=-\sqrt{32}$, providing justification for your answer.

SOLUTION:

(a) Complete the square.

$$
\begin{gathered}
x^{2}-8 y^{2}-\frac{1}{4}\left(z^{2}-8 z+16-16\right)-20=0 \\
x^{2}-8 y^{2}-\frac{1}{4}(z-4)^{2}=20-4=16 \\
-\frac{x^{2}}{16}+\frac{y^{2}}{2}+\frac{(z-4)^{2}}{64}=-1 \quad \text { or } \quad \frac{x^{2}}{16}-\frac{y^{2}}{2}-\frac{(z-4)^{2}}{64}=1 \quad \text { or } \quad-\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{\sqrt{2}}\right)^{2}+\left(\frac{z-4}{8}\right)^{2}=-1
\end{gathered}
$$

This is a hyperboloid of two sheets.
(b) Intersecting the $y z$-plane means that $x=0$. Substituting this into the equation gives the result

$$
\frac{y^{2}}{2}+\frac{(z-4)^{2}}{64}=\left(\frac{y}{\sqrt{2}}\right)^{2}+\left(\frac{z-4}{8}\right)^{2}=-1
$$

an equation with no solution (sum of two squares is never negative). Thus, the surface does not intersect the $y z$-plane. Alternatively, using the original equation we arrive at the same conclusion.

$$
\begin{gathered}
-\frac{1}{4} z^{2}-8 y^{2}+2 z-20=0 \\
z^{2}+32 y^{2}-8 z+80=0 \\
z^{2}-8 z+16+32 y^{2}+80-16=0 \\
(z-4)^{2}+32 y^{2}=-64
\end{gathered}
$$

(c) To find the trace, substitute $x=-\sqrt{32}$ into the equation. The result is

$$
-\frac{(-\sqrt{32})^{2}}{16}+\frac{y^{2}}{2}+\frac{(z-4)^{2}}{64}=-1 \Longrightarrow\left(\frac{y}{\sqrt{2}}\right)^{2}+\left(\frac{z-4}{8}\right)^{2}=1
$$

which is an ellipse. Alternatively, using the original equation we arrive at the same result.

$$
\begin{gathered}
-\frac{1}{4} z^{2}-8 y^{2}+(-\sqrt{32})^{2}+2 z-20=0 \\
z^{2}+32 y^{2}-128-8 z+80=0 \\
z^{2}-8 z+16+32 y^{2}-48-16=0 \\
(z-4)^{2}+32 y^{2}=64 \\
\left(\frac{z-4}{8}\right)^{2}+\left(\frac{y}{\sqrt{2}}\right)^{2}=1
\end{gathered}
$$

3. [2350/021523 (15 pts)] Find the equation of the plane that is perpendicular to the plane $2 z=5 x+4 y$ and contains the line with symmetric equations $-x=\frac{y+2}{5}=\frac{z-5}{-4}$. Write your final answer in the form $a x+b y+c z=d$.

SOLUTION:

Let P be the plane whose equation we seek. We need a point in P and its normal vector, \mathbf{n}. Begin by noting that the line has parametric equations

$$
x=-t \quad y=-2+5 t \quad z=5-4 t
$$

giving a direction vector of $\mathbf{v}_{1}=-\mathbf{i}+5 \mathbf{j}-4 \mathbf{k}$ which is parallel to P. A point in P is on the given line, say when $t=0$, giving $(0,-2,5)$.
The normal vector to the given plane is $\mathbf{v}_{2}=5 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$, which is parallel to P since the two planes are perpendicular. The cross product of \mathbf{v}_{1} and \mathbf{v}_{2} will be normal to both of these vectors and thus provide the normal, \mathbf{n}, to P.

$$
\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 5 & -4 \\
5 & 4 & -2
\end{array}\right|=6 \mathbf{i}-22 \mathbf{j}-29 \mathbf{k}
$$

Thus

$$
6(x-0)-22(y+2)-29(z-5)=0 \Longrightarrow 6 x-22 y-44-29 z+145=0 \Longrightarrow 6 x-22 y-29 z=-101
$$

4. [2350/021523 (46 pts)] A scorpion is crawling on a shelf located 2 meters above the floor in a room. Its path is given by

$$
\mathbf{r}(t)=\frac{t^{3}}{3} \mathbf{i}+\frac{t^{2}}{2} \mathbf{j}+2 \mathbf{k} \quad t \geq 0
$$

with distances measured in meters. Answer ALL of the following questions for $t=1$ second.
(a) $[3 \mathrm{pts}]$ Where is the scorpion?
(b) [4 pts] How fast is the scorpion crawling? (Include units in your answer)
(c) $[8 \mathrm{pts}]$ Briefly describe in words (i.e. DO NOT COMPUTE) what the following two quantities represent physically in terms of the scorpion's path:
i. $\sqrt{\mathbf{r}(t) \cdot \mathbf{r}(t)}$
ii. $\int_{0}^{t} \sqrt{\mathbf{r}^{\prime}(u) \cdot \mathbf{r}^{\prime}(u)} \mathrm{d} u$
(d) [5 pts] Find the scorpion's unit tangent vector, T.
(e) $[5 \mathrm{pts}]$ Find the unit normal to the scorpion's path, which for this curve can be accomplished by computing $\mathbf{T} \times \mathbf{k}$.
(f) [5 pts] Find the binormal vector to the scorpion's path by calculating $\mathbf{T} \times \mathbf{N}$.
(g) [4 pts $]$ Find the equation of the scorpion's osculating plane.
(h) [4 pts] In your bluebook, draw an $x y z$-coordinate system according to the right hand rule such that the positive z-axis is perpendicular to and out of your paper and your paper is the plane $z=2$. Then draw $\mathbf{T}(1)$ and $\mathbf{N}(1)$ at the appropriately labeled point. Be sure to label the vectors correctly.
(i) [4 pts] How fast is the scorpion's speed changing? (Include units in your answer)
(j) [4 pts] Does the scorpion's acceleration possess a component normal to its path? If so, find its magnitude, including units in your answer. If not, explain why not.

SOLUTION:

(a) This is just the position vector evaluated at $t=1$.

$$
\mathbf{r}(1)=\frac{1}{3} \mathbf{i}+\frac{1}{2} \mathbf{j}+2 \mathbf{k} \text { or }\left(\frac{1}{3}, \frac{1}{2}, 2\right)
$$

(b) Need to find the speed, $\|\mathbf{v}(1)\|$. We have

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=t^{2} \mathbf{i}+t \mathbf{j} \Longrightarrow \mathbf{v}(1)=\mathbf{i}+\mathbf{j} \Longrightarrow\|\mathbf{v}(1)\|=\sqrt{2} \mathrm{~m} / \mathrm{s}
$$

(c) i. $\sqrt{\mathbf{r}(1) \cdot \mathbf{r}(1)}=\|\mathbf{r}(1)\|$, which is the distance the scorpion is from the origin after one second.
ii. $\int_{0}^{1} \sqrt{\mathbf{r}^{\prime}(u) \cdot \mathbf{r}^{\prime}(u)} \mathrm{d} u=\int_{0}^{1}\left\|\mathbf{r}^{\prime}(u)\right\| \mathrm{d} u$, which gives the distance the scorpion has actually crawled during the first second, that is, the arc length of the scorpion's path over the first second.
(d) From part (b), $\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{t^{4}+t^{2}}=\sqrt{t^{2}\left(t^{2}+1\right)}=|t| \sqrt{t^{2}+1}=t \sqrt{t^{2}+1}$ since $t \geq 0$.

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{t^{2} \mathbf{i}+t \mathbf{j}}{t \sqrt{t^{2}+1}}=\frac{t}{\sqrt{t^{2}+1}} \mathbf{i}+\frac{1}{\sqrt{t^{2}+1}} \mathbf{j} \Longrightarrow \mathbf{T}(1)=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j}
$$

Alternatively, we have all of the information we need from part (b)

$$
\mathbf{T}(1)=\frac{\mathbf{v}(1)}{\|\mathbf{v}(1)\|}=\frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}
$$

(e)

$$
\mathbf{N}(1)=\mathbf{T}(1) \times \mathbf{k}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right|=\frac{1}{\sqrt{2}} \mathbf{i}-\frac{1}{\sqrt{2}} \mathbf{j}
$$

(f)

$$
\mathbf{B}(1)=\mathbf{T}(1) \times \mathbf{N}(1)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right|=-\mathbf{k}
$$

(g) Since \mathbf{T} and \mathbf{N} have no k-component, the osculating plane is parallel to the $x y$-plane. Since the trajectory (path) includes the component $2 \mathbf{k}$, the osculating plane's equation is $z=2$. Alternatively, the binormal vector $(-\mathbf{k})$ can serve as a normal vector to the osculating plane. A point in the osculating plane is $\left(\frac{1}{3}, \frac{1}{2}, 2\right)$. Then

$$
0\left(x-\frac{1}{3}\right)+0\left(y-\frac{1}{2}\right)+-1(z-2)=0 \Longrightarrow z=2
$$

(h) The following figure shows \mathbf{T} and \mathbf{N}. Note that \mathbf{B} is pointing into the page in the figure.

(i) We will need the acceleration vector $\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)=2 t \mathbf{i}+\mathbf{j} \Longrightarrow \mathbf{a}(1)=2 \mathbf{i}+\mathbf{j}$. The speed change is simply the tangential component of the acceleration.

$$
a_{T}(1)=\frac{\mathbf{r}^{\prime}(1) \cdot \mathbf{r}^{\prime \prime}(1)}{\left\|\mathbf{r}^{\prime}(1)\right\|}=\frac{(\mathbf{i}+\mathbf{j}) \cdot(2 \mathbf{i}+\mathbf{j})}{\sqrt{2}}=\frac{3}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}
$$

Alternatively,

$$
\begin{gathered}
a_{T}(t)=\frac{\mathrm{d}\|\mathbf{v}(t)\|}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{~d} t} \sqrt{t^{4}+t^{2}}=\frac{4 t^{3}+2 t}{2 \sqrt{t^{4}+t^{2}}} \\
a_{T}(1)=\frac{3}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

(j) Yes.

$$
a_{N}(1)=\frac{\left\|\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)\right\|}{\left\|\mathbf{r}^{\prime}(1)\right\|}=\frac{1}{\sqrt{2}}\left\|\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 0 \\
2 & 1 & 0
\end{array}\right|\right\|=\frac{1}{\sqrt{2}}\|-\mathbf{k}\|=\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}
$$

Alternatively,

$$
\begin{gathered}
\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)=2 t \mathbf{i}+\mathbf{j} \Longrightarrow\|\mathbf{a}(t)\|=\sqrt{4 t^{2}+1} \\
a_{N}(1)=\sqrt{\|\mathbf{a}(1)\|^{2}-a_{T}(1)^{2}} \\
=\sqrt{\left(\sqrt{4(1)^{2}+1}\right)^{2}-\left(\frac{3}{\sqrt{2}}\right)^{2}}=\sqrt{5-\frac{9}{2}}=\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Since this is nonzero, there is an acceleration normal to the scorpion's path.
5. [2350/021523 (12 pts)] Consider the force given by $\mathbf{F}=2 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$ Newtons.
(a) [6 pts] Suppose you are moving in a straight line in the direction of $\mathbf{v}=6 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. Calculate the work done by the force if you continue moving along the line a total distance of 6 meters.
(b) [6 pts] Consider a beam mounted at the point P that can rotate around that point. The force, \mathbf{F}, is applied to the beam at an angle of 30 degrees, resulting in a torque of magnitude 30 Newton-m. How far from P was the force applied?

SOLUTION:

(a) We begin by finding the displacement vector, \mathbf{D}.

$$
\mathbf{D}=6 \frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{6}{\sqrt{6^{2}+2^{2}+3^{2}}}(6 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k})=6\left(\frac{6}{7} \mathbf{i}+\frac{2}{7} \mathbf{j}+\frac{3}{7} \mathbf{k}\right)
$$

Then

$$
\text { Work }=\mathbf{F} \cdot \mathbf{D}=(2 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}) \cdot 6\left(\frac{6}{7} \mathbf{i}+\frac{2}{7} \mathbf{j}+\frac{3}{7} \mathbf{k}\right)=\frac{6}{7}(12+14+9)=30 \text { Newton-m }=30 \text { Joules }
$$

(b)

$$
\|\mathbf{r}\|=\frac{\|\boldsymbol{\tau}\|}{\|\mathbf{F}\| \sin 30^{\circ}}=\frac{30}{\sqrt{2^{2}+7^{2}+3^{2}}(1 / 2)}=\frac{60}{\sqrt{62}} \mathrm{~m}=\frac{30 \sqrt{62}}{31} \mathrm{~m}
$$

