- This exam is worth 100 points and has 5 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted. You are allowed one $8.5 " \times 11$ " crib sheet with writing on one side.

0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." Failure to include this statement and your Signature may result in a penalty.
1. [2350/021523 (15 pts)] Han Solo and Chewbacca are piloting the Millennium Falcon along the path given by

$$
\mathbf{r}(t)=\cos (\pi t) \mathbf{i}+\sin (\pi t) \mathbf{j}+\left(4 t-t^{2}\right) \mathbf{k}, \quad t \geq 0
$$

When $t=3$, Chewy fires a laser beam from the front of the ship that travels forward in a straight line. Find the coordinates of the point where the laser beam penetrates the $x y$-plane.
2. [2350/021523 (12 pts)] Consider the equation $-\frac{1}{4} z^{2}-8 y^{2}+x^{2}+2 z-20=0$
(a) [4 pts] Name the surface, providing justification for your answer.
(b) $[4 \mathrm{pts}]$ Does the surface intersect the $y z$-plane? Justify your answer.
(c) [4 pts] Name the conic section of the trace when $x=-\sqrt{32}$, providing justification for your answer.
3. [2350/021523 (15 pts)] Find the equation of the plane that is perpendicular to the plane $2 z=5 x+4 y$ and contains the line with symmetric equations $-x=\frac{y+2}{5}=\frac{z-5}{-4}$. Write your final answer in the form $a x+b y+c z=d$.
4. [2350/021523 (46 pts)] A scorpion is crawling on a shelf located 2 meters above the floor in a room. Its path is given by

$$
\mathbf{r}(t)=\frac{t^{3}}{3} \mathbf{i}+\frac{t^{2}}{2} \mathbf{j}+2 \mathbf{k} \quad t \geq 0
$$

with distances measured in meters. Answer ALL of the following questions for $t=1$ second.
(a) $[3 \mathrm{pts}]$ Where is the scorpion?
(b) [4 pts] How fast is the scorpion crawling? (Include units in your answer)
(c) $[8 \mathrm{pts}]$ Briefly describe in words (i.e. DO NOT COMPUTE) what the following two quantities represent physically in terms of the scorpion's path:
i. $\sqrt{\mathbf{r}(t) \cdot \mathbf{r}(t)}$
ii. $\int_{0}^{t} \sqrt{\mathbf{r}^{\prime}(u) \cdot \mathbf{r}^{\prime}(u)} \mathrm{d} u$
(d) $[5 \mathrm{pts}]$ Find the scorpion's unit tangent vector, \mathbf{T}.
(e) $[5 \mathrm{pts}]$ Find the unit normal to the scorpion's path, which for this curve can be accomplished by computing $\mathbf{T} \times \mathbf{k}$.
(f) [5 pts] Find the binormal vector to the scorpion's path by calculating $\mathbf{T} \times \mathbf{N}$.
(g) [4 pts] Find the equation of the scorpion's osculating plane.
(h) [4 pts] In your bluebook, draw an $x y z$-coordinate system according to the right hand rule such that the positive z-axis is perpendicular to and out of your paper and your paper is the plane $z=2$. Then draw $\mathbf{T}(1)$ and $\mathbf{N}(1)$ at the appropriately labeled point. Be sure to label the vectors correctly.
(i) [4 pts] How fast is the scorpion's speed changing? (Include units in your answer)
(j) [4 pts] Does the scorpion's acceleration possess a component normal to its path? If so, find its magnitude, including units in your answer. If not, explain why not.
5. [2350/021523 (12 pts)] Consider the force given by $\mathbf{F}=2 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$ Newtons.
(a) [6 pts] Suppose you are moving in a straight line in the direction of $\mathbf{v}=6 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. Calculate the work done by the force if you continue moving along the line a total distance of 6 meters.
(b) [6 pts] Consider a beam mounted at the point P that can rotate around that point. The force, \mathbf{F}, is applied to the beam at an angle of 30 degrees, resulting in a torque of magnitude 30 Newton-m. How far from P was the force applied?

