
APPM 2350—Final Exam
Saturday April 30th, 10:30am-1pm 2022

This exam has 5 problems. Please start each new problem at the top of a new page in your blue book. Show
all your work in your blue book and simplify your answers. Answers with missing or insufficient justifica-
tion will receive no points. You are allowed one 8.5×11-in page of notes (TWO sided). You may NOT use a
calculator, smartphone, smartwatch, the Internet or any other electronic device.

Problem 1 (30 points) The following questions are not related:

(a) Find the value(s) of a and b where the function

I(a, b) =

ˆ b

a
(−2x2 + 10x− 12) dx

has a local maximum. Be sure to support your answer using Calculus 3 concepts.

SOLUTION:

To support our answer to this problem using Calculus 3 concepts, we must find and classify all
critical points of I(a, b). We can check our answer by graphing the integrand (it’s a downward
opening parabola), but only using the graph of the integrand to answer this question is not sufficient
justification for full credit on this problem. This problem is asking us to connect what we may have
learned in Calc 1 to the Calc 3 concept of finding the local maxima of functions of 2 variables.

Local max/min/saddles occur when ∇I = 0⃗.

Using the Fundamental Theorem of Calculus:

Ib =
∂

∂b

ˆ b

a
(−2x2 + 10x− 12) dx = −2b2 + 10b− 12

Ia =
∂

∂a

ˆ b

a
(−2x2 + 10x− 12) dx = −(−2a2 + 10a− 12)

∇I = 0⃗ (1)

=⇒
〈
2a2 − 10a+ 12,−2b2 + 10b− 12

〉
= ⟨0, 0⟩ (2)

Resulting in the system of equations:

2a2 − 10a+ 12 = 0

−2b2 + 10b− 12 = 0

.
which we can factor:

2(a− 3)(a− 2) = 0

−2(b− 3)(b− 2) = 0

The values a = 2, 3 solve the first equation and b = 2, 3 solve the second equation.

The possible local maximums occur at: (2, 2), (2, 3), (3, 2), and (3, 3).

We can find which one is a local max by using D = IaaIbb − Iab
2.

For I(a, b): Iaa = 4a− 10, Ibb = −4b+ 10, and Iab = 0.
Thus D = (4a− 10)(10− 4b)



D(2, 2) < 0 (saddle point)
D(3, 3) < 0 (saddle point)
D(3, 2) > 0 and Iaa(3, 2) > 0, thus this is a local min
Since D(2, 3) = (4(2) − 10)(−4(3) + 10) + 02 = 4 is positive and Iaa(2, 3) = −2 is negative

then there is a local maximum at (a,b)=(2,3)

■
(b) Consider the function

f(x, y, z) = x2y − z cos(y)

Use a directional derivative to approximate how much f changes if one moves a distance 0.1 from
the point (4, 0, 3) straight toward the origin.

SOLUTION:

We use the formulation:

Dûf = ∇f · û

The vector pointing from (4, 0, 3) to the origin (0, 0, 0) is ⟨0− 4, 0− 0, 0− 3⟩ = ⟨−4, 0,−3⟩.
Finding the unit vector we get:

û =
⟨−4, 0,−3⟩√

(−4)2 + 02 + (−3)2
=

〈
−4

5
, 0,−3

5

〉
.

The gradient of f is ∇f =
〈
2xy, x2 + z sin y,− cos y

〉
. So the directional derivative is:

Dûf = ∇f · û =
〈
2xy, x2 + z sin y,− cos y

〉
·
〈
−4

5
, 0,−3

5

〉
= −8

5
xy + 0 +

3

5
cos y

The directional derivative at (4, 0, 3) is:

Dûf(4, 0, 3) = −8

5
(4)(0) +

3

5
cos(0) =

3

5
.

So the approximate change of f in the direction of û over a distance of 0.1 is given by:
3

5

1

10
=

3

50
.

■
(c) Arrange the following three double integrals in order from least to greatest and explain/justify your

reasoning:

ˆ 2

0

ˆ 1

0
ex

2+y2 dx dy,

ˆ 2

0

ˆ 2− y
2

0
ex

2+y2 dx dy,

ˆ 2

0

ˆ 1− y
2

0
ex

2+y2 dx dy

SOLUTION:

We begin by noting that ex
2+y2 > 0 for all (x, y), so we can interpret each double integral as the

positive volume of a solid bounded below by the region of integration on the xy-plane and above by
the surface z = ex

2+y2 . Sketching the three regions of integration on the xy-plane we get:



Where the rectangular region, A, bounded by x = 0, x = 1, y = 0, and y = 2 in black is

the region of integration for the first integral
ˆ 2

0

ˆ 1

0
ex

2+y2 dx dy. The region of integration for
ˆ 2

0

ˆ 2− y
2

0
ex

2+y2 dx dy is given by the trapezoidal region which is the sum of the orange triangular

region and the rectangular region A. Finally, the triangular region, C, bounded by x = 0, y = 0, and

y = −2x+ 2 in blue is the region of integration for
ˆ 2

0

ˆ 1− y
2

0
ex

2+y2 dx dy.

Since ex
2+y2 > 0 we know that:

ˆ 2

0

ˆ 1− y
2

0
ex

2+y2 dx dy <

ˆ 2

0

ˆ 1

0
ex

2+y2 dx dy <

ˆ 2

0

ˆ 2− y
2

0
ex

2+y2 dx dy

■

Problem 2 (30 points)
Given the force vector field

F(x, y, z) = 2yi+ 3zj− xk

Consider the plane P that passes through the points (1, 1, 3), (3, 0, 1) and (−2, 2, 7). Let C be any closed
circular path with radius a that lies in the plane P , oriented counterclockwise when viewed from above (that
is, when viewed from the positive z-axis looking down). Note, the circular path C does not necessarily pass
through the given points. (It is tricky to parameterize the path C, so don’t try to parameterize it during this
exam).

(a) Without parameterizing the path, what is the curvature of the path C?
SOLUTION:

Since the curve is a circle of radius a then the curvature is
1

a
.

■



(b) Without parameterizing the path, what is the unit binormal, B̂, to the path C?
SOLUTION:
The unit binormal is defined to be B̂ = T̂ × N̂ where T̂ is the unit tangent vector to the curve and
N̂ is the unit normal vector to the curve. Since the circle lies within the plane, P , we know that T̂
and N̂ both lie within P as well. So B̂ is a unit vector that is normal to the plane. We will find B̂ by
taking the cross product of any two vectors that lie in the plane, then we’ll divide by the magnitude
of the vector we find, and finally we will check the direction of the resulting unit vector.

Let

ṽ1 =< 3− 1, 0− 1, 1− 3 > (3)

=< 2,−1,−2 > (4)

and

ṽ2 =< −2− 1, 2− 1, 7− 3 > (5)

=< −3, 1, 4 > . (6)

So

ṽ1×ṽ2 =

∣∣∣∣∣∣
î ĵ k̂

2 −1 −2

−3 1 4

∣∣∣∣∣∣ = [(−1)(4)− (−2)(1)] î−[(2)(4)− (−2)(−3)] ĵ+[(2)(1)− (−1)(−3)] k̂ = −2̂i−2̂j−k̂.

Finding the unit vector we get
ṽ1 × ṽ2

||ṽ1 × ṽ2||
=

−2̂i+ 2̂j− 1k̂√
(−2)2 + 22 + (−1)2

= −2

3
î− 2

3
ĵ− 1

3
k̂.

The curve is oriented counterclockwise when looking from the positive z-direction. Because C
is a circle we know that N̂ points toward the center of the circle for all points on the curve. So
the direction of B̂ must have a positive k̂ component by the right hand rule for cross products. So

B̂ = − ṽ1 × ṽ2

||ṽ1 × ṽ2||
=

2

3
î+

2

3
ĵ+

1

3
k̂

■
(c) Without parameterizing the path, find the work done by F once around C.

SOLUTION:
Let S be the surface that is the portion of the plane, P , enclosed by the circle C. Since F̃ has
continuous partial derivatives over the surface S then Stoke’s Theorem applies:

˛

C

F̃ · T̂ ds =

¨

S

(
∇× F̃

)
· n̂ dS.

We find ∇× F̃:

∇× F̃ =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

2y 3z −x

∣∣∣∣∣∣∣ = [0− 3] î− [−1− 0] ĵ+ [0− 2] k̂ = −3̂i+ ĵ− 2k̂.

Note that the outward pointing normal n̂ is B̂ found in part (b). B̂ points in the correct direction
relative to the orientation of the curve. So

(
∇× F̃

)
·n̂ =

(
∇× F̃

)
·B̂ = (−3̂i+ĵ−2k̂)·

(
2

3
î+

2

3
ĵ+

1

3
k̂

)
= (−3)

(
2

3

)
+(1)

(
2

3

)
−(2)

(
1

3

)
= −2.



and we get ¨

S

(
∇× F̃

)
· n̂ dS =

¨

S

−2 dS = −2

¨

S

dS = −2πa2

since S is a circle with area πa2.
■

Problem 3 (30 pts)
A velocity field is given by

F = a(z + xey)i+ (bx2 + cz)eyj+ (sin z + ey)k

(a) For what values of a, b and c will F be conservative? Be sure to justify your answer and double
check your work.

(b) Using the values of a, b and c you found above, find the flow of F along the straight line path starting
at (0, 0, 0) and ending at (1, 0, π) using an appropriate Calculus 3 theorem.

(c) Verify your answer in part (b) by direct computation (i.e. by evaluating a line integral).

SOLUTION:

(a) A vector field is conservative if its curl is 0⃗. ∇×F = ⟨Ry −Qz, Pz −Rx, Qx − Py⟩. Compute the
derivatives:

Py = axey Pz = a

Qx = 2bxey Qz = cey

Rx = 0 Ry = ey

Compute the values of a, b, and c:

Ry −Qz = (1− c)ey = 0 ⇔ c = 1

Pz −Rx = a = 0 ⇔ a = 0

Qx − Py = (2b− a)xey = 0 ⇔ b =
a

2
= 0

So
F = ⟨0, zey, sin z + ey⟩

We can check our work by finding a potential function f(x, y, z) such that ∇f = F:

fx = 0 ⇔ f(x, y, z) = g(y, z)

fy = zey ⇔ f(x, y, z) = zey + h(x, z)

fz = sin z + ey ⇔ f(x, y, z) = zey − cos z + j(x, y)

The above information implies that

f(x, y, z) = zey − cos z + C .

One can compute the gradient of this function and check that ∇f = F.
(b) The flow of F along a path is ˆ

C
F · dr.

Using the fundamental theorem of line integrals and the potential function we found in part (a):ˆ
C
F · dr = f(end)− f(start)

= f(1, 0, π)− f(0, 0, 0)

= (π + 1)− (−1)

= π + 2



(c) Parametrizing the stright line between the end and start gives r(t) = ⟨t, 0, πt⟩ and dr = r′(t) dt =

⟨1, 0, π⟩ dt. F(r(t)) = ⟨0, πte0, sin(πt) + e0⟩ = ⟨0, πt, sin(πt) + 1⟩.ˆ
C
F · dr =

ˆ b

a
F(r(t)) · r′(t) dt

=

ˆ 1

0
(π sin(πt) + π) dt

= − cos(πt) + π

∣∣∣∣1
0

= (1 + π)− (−1 + 0)

= π + 2

■

CONT’D ON REVERSE



Problem 4 (20 pts)
The following questions are not related:

(a) Suppose ˆ

C

4y dx+ 7x dy = 13

where C is a simple, smooth curve oriented counter-clockwise in the xy-plane that encloses the
region R. Given only this information, is it possible to find the area of R? If so, find it and justify
your reasoning. If not, explain what additional information you’d need.
SOLUTION:
Yes, it is possible to find the area of R. Considering the vector field F = ⟨4y, 7x⟩ and the fact that
C is a simple closed curve, we may invoke Green’s Theorem.

Using Green’s Theorem (curl-circulation form), we can view the line integral above as the work/flow/circulation
of the vector field F = ⟨4y, 7x⟩ around the curve:

13 =

ˆ

C

4y dx+ 7x dy

=

ˆ

C

⟨4y, 7x⟩ · ⟨dx, dy⟩

=

ˆ

C

F · dr

=

¨

R

(∇× F) · k dA (Green’s Thm)

=

¨

R

(7− 4) dA

=

¨

R

3 dA

Hence the area of R =

¨

R

dA =
13

3
.

Alternatively you can do a similar calculation using Green’s Theorem (flux-divergence form) and
the vector field G = ⟨7x,−4y⟩, and you will reach the same conclusions. ■

(b) Let
˜
R

dA give the area of a region R in the first quadrant of the xy-plane. (Note, this region is

not related to the region R in part (a)). You are interested in finding the volume V , generated
by revolving R about the x- axis. If

˜
R

g(x, y) dA is the integral that calculates the volume V ,

determine the integrand g(x, y).
SOLUTION:

Option 1: Use what we’ve learned about rotating regions in the rz-plane.
Given any region S in the rz-plane, we can write its area in terms of double integral(s):

Area =

¨

S

dz dr



And the volume obtained by rotating that region around the z-axis is given by integral(s) of the
form:

V ol =

ˆ 2π

0

¨

S

r dz dr dθ = 2π

¨

S

r dz dr =

¨

S

2πr dz dr

In the given problem, we are using the x-axis as the axis of rotation (so it’s behaving like z in the
formula above). And we are rotating the y-axis around the x-axis, (so y is behaving like r in the
formula above).

Thus given any region R in the xy-plane, we can write its area in terms of double integral(s):

Area =

¨

R

dx dy

And the volume obtained by rotating that region around the x-axis is given by integral(s) of the
form:

V ol =

ˆ 2π

0

¨

R

y dx dy dθ = 2π

¨

R

y dx dy =

¨

R

2πy dx dy

Thus

g(x, y) = 2πy

Option 2: Use the Chop up/Approximate/Sum Method we’ve used throughout Calc 3.
CHOP UP the region R into tiny subrectangles of area ∆A = ∆x∆y

APPROXIMATE THE VOLUME of rotating one subrectangle around the x-axis: This will result
in a tube with rectangular cross sections. If you lay the tube out flat, it will have length 2πy (the
circumference of a circle with radius equal to y) and the area of its cross sections are ∆A. Thus the
volume of the tube will be 2πy∆A

If we SUM these volumes over the region R and
TAKE THE LIMIT as ∆A → 0 we get:

V ol =

¨

R

2πy dA =⇒ g(x, y) = 2πy

Option 3: Reverse-engineer the formulas we used for volumes of revolution in calc 2. .
Calc 2 case 1: Washer Method

If the region R is bounded by curves of the form y = h(x) and y = j(x) where h(x) ≥ j(x), in
calc 2 we would use the washer method. Since we are rotating about the x-axis, the formula would
be ˆ

π(R2
out −R2

in) dx =

ˆ
π(h(x)2 − j(x)2) dx.

Calc 2 case 2: Shell Method
However, if the region R is bounded by curves of the form x = j(y) and x = k(y) with j(y) >

k(y), the washer method may not work. In this case we would use the shell method:ˆ
2πRhdy =

ˆ
2πy(j(y)− k(y)) dy

where R is the radius of a given shell and h is the “height” of the shell, or in this case the horizontal
length.
Calc 3 Solution

In calc 3 we know that the region R might be much more complicated, so neither of the above
calc 2 formulas would work in full generality. Instead, we want to understand that these formulas



are derived from a calc 3 double integral of the form:¨

R

g(x, y) dA.

Using the calc 2 cases as insight, as well as having mastered the calculus concepts of summing
infinitesimal pieces together, the questions one would ask would be,

(i) Given
¨

R

g(x, y) dA, if we integrate with respect to y first, how do we get a single washer?

(ii) Given
¨

R

g(x, y) dA if we integrate with respect to x first, how do we get a single shell?

To answer (i) notice that a washer or a disk is created by “adding” together i.e. integrating to-
gether, the circumference of circles with increasing radii. I.e. take a circle, center on the x-axis,
circle parallel to the yz-plane, and increase the radius y. We get

´
2πy dy to create a single washer,

then summing these washers horizontally (in the x-direction) gives the volume¨

R

2πy dydx.

Let’s check to see if this formula answers question (ii). To create a shell, we again take the
circumference of a circle (center on the x-axis, circle parallel to the yz-plane), but now keep the
radius fixed and integrate horizontally, so

´
2πydx gives a single shell. Now summing the shells in

the y-direction gives the volume ¨

R

2πy dxdy.

Thus g(x, y) = 2πy. The astute calc 3 student will check that if the region R is given by either of
the calc 2 cases, then our calc 3 double integral will reduce to the washer method or the shell method
after integrating the first variable.

■

Problem 5 (40 pts)
Consider the 3D solid object E that is bounded on the top by z = 2, on the bottom by z = 0 and on the sides
by x2 + y2 + z2 = 8.
Let

G = yi− xj+ 3zk

(a) Sketch and shade a cross section of the object in the rz-plane. Label axes and any intercepts.
SOLUTION:

■
(b) Calculate the volume of the object.

SOLUTION:

OPTION 1: Using cylindrical coordinates dr dz dθ:



V =

ˆ 2π

0

ˆ 2

0

ˆ √
8−z2

0
r dr dz dθ =

40

3
π

OPTION 2: Using cylindrical coordinates dz dr dθ:
Using this ordering we need to break this up into 2 regions. The projection of the first region onto

the xy-plane is given by

The projection of the 2nd region onto the xy-plane is given by

V =

ˆ 2π

0

ˆ 2

0

ˆ 2

0
r dz dr dθ +

ˆ 2π

0

ˆ 2
√
2

2

ˆ √
8−r2

0
r dz dr dθ = 8π +

16

3
π =

40

3
π

OR using subtraction

V =
1

2

(
4

3
π83/2

)
−
ˆ 2π

0

ˆ 2

0

ˆ √
8−r2

2
r dz dr dθ =

32

3
π
√
2− 8(4

√
2− 5)

3
=

40

3
π

OPTION 3: Using spherical coordinates: dρ dϕ dθ:

V =

ˆ 2π

0

ˆ π/4

0

ˆ 2 secϕ

0
ρ2 sinϕdρ dϕ dθ +

ˆ 2π

0

ˆ π/2

π/4

ˆ √
8

0
ρ2 sinϕdρ dϕ dθ =

8

3
π +

32

3
π =

40

3
π

OR using subtraction

V =
1

2

(
4

3
π83/2

)
−
ˆ 2π

0

ˆ π/4

0

ˆ √
8

2 secϕ
ρ2 sinϕdρ dϕ dθ =

32

3
π
√
2− 8(4

√
2− 5)

3
=

40

3
π

■
(c) Calculate the outward flux of the vector field G through the entire surface of the object E using an

appropriate Calculus 3 theorem.
SOLUTION:
Since the surface S of E is closed, and since G has continuous partial derivatives everywhere, we
can use the Divergence Theorem to calculate the net outward flux:



∇ ·G = 3

Flux =

‹

S

G · n dS =

˚

E

∇ ·G dV =

˚

E

3 dV

= 3(volume of E)

= 3

(
40π

3

)
= 40π

■
(d) Verify your answer to part (c) by separately calculating the flux through each part of the bounding

surface (i.e. the top, the bottom and the side) and adding them together.

SOLUTION:

Flux =

‹

S

G · n dS =

¨

Stop

G · n dS +

¨

Sbottom

G · n dS +

¨

Ssides

G · n dS

Along Sside:
Let g(x, y, z) = x2 + y2 + z2 and let p = k

Thus ∇g = ⟨2x, 2y, 2z⟩, which points in the direction we want since it points outward from the sphere.
Thus

n dS =
∇g

|∇g · k|
dA =

⟨2x, 2y, 2z⟩
|2z|

=
⟨x, y, z⟩

z
dA, since z > 0 on the sides

¨

Sside

G · n dS =

¨

Rside

⟨y,−x, 3z⟩ · ⟨x, y, z⟩
z

dA

=

¨

Rside

3z dA

=

¨

Rside

3
√

8− x2 − y2 dA

Where Rside is given by:

Switching to polar

=

ˆ 2π

0

ˆ 2
√
2

2
3
√
8− r2 r drdθ

= 3 (2π)

ˆ 2
√
2

2
r
√
8− r2 dr



= 3 (2π)

(
8

3

)
= 16π

Along Sbottom:
dS = dA and n = −k

Thus
¨

Stop

G · n dS =

¨

Rtop

⟨y,−x, 3z⟩ · ⟨0, 0,−1⟩ dA

=

¨

Rtop

3z dA =

¨

Rtop

3(0) dA = 0 (since z = 0 on the bottom surface.)

Along Stop:
dS = dA and n = k. Thus the projection on the xy-plane is given by:

Thus
¨

Stop

G · n dS =

¨

Rtop

⟨y,−x, 3z⟩ · ⟨0, 0, 1⟩ dA

=

¨

Rtop

3z dA =

¨

Rtop

3(2) dA (since z = 2 on the top surface)

= 6

¨

Rtop

dA = 6
(

Area of Rtop
)

= 6
(
π22

)
= 24π

Thus

Total Outward Flux =

‹

S

G · n dS = 16π + 0 + 24π = 40π

■

End Of Exam: Have a great summer!


