1. [2350/121923 (24 pts)] Write the word TRUE or FALSE as appropriate. Write your answers in a single column separate from any work you do. No work need be shown. No partial credit given.
(a) If $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \mathbf{b}=-\mathbf{i}+2 \mathbf{k}$ and $\mathbf{c}=-3 \mathbf{j}+\mathbf{k}$, then $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=1$.
(b) The first order Taylor polynomial for $h(x, y)=e^{-x^{2}-y^{2}}$ centered at $(0,0)$ is $T_{1}(x, y)=1$.
(c) The curvature of the path $\mathbf{r}(s)$ given by the arc length parameterization $\mathbf{r}(s)=\frac{\sqrt{3}}{2} s \mathbf{i}+\sin \frac{s}{2} \mathbf{j}-\cos \frac{s}{2} \mathbf{k}$ is always $\kappa=0.25$.
(d) If $f(x, y, z)=\ln \left(x^{2}+y^{3}+z^{4}\right)$, there exists a unit vector \mathbf{w} such that the instantaneous rate of change of f with respect to distance in the direction of \mathbf{w} at the point $(1,-1,1)$ equals 10 .
(e) The equations of the normal line and tangent plane to the surface $x^{2}+y^{2}-z^{2}=4$ at the point $P(2,1,-1)$ are, respectively, $\mathbf{l}(t)=\langle 4 t+2,2 t+1,2 t-1\rangle, t$ a real number, and $2 x+y+z=4$.
(f) Particles moving along straight line paths always experience zero acceleration.

SOLUTION:

(a) FALSE

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 0 & 2 \\
0 & -3 & 1
\end{array}\right|=17
$$

(b) TRUE

$$
T_{1}(x, y)=h(0,0)+h_{x}(0,0)(x-0)+h_{y}(0,0)(y-0)=1-\left.\left(2 x e^{-x^{2}-y^{2}}\right)\right|_{(0,0)} x-\left.\left(2 y e^{-x^{2}-y^{2}}\right)\right|_{(0,0)} y=1
$$

(c) TRUE Since this is an arc length parameterization, $\left\|\mathbf{r}^{\prime}(s)\right\|=1$ so that

$$
\begin{gathered}
\mathbf{T}(s)=\mathbf{r}^{\prime}(s)=\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \cos \frac{s}{2} \mathbf{j}+\frac{1}{2} \sin \frac{s}{2} \mathbf{k} \\
\frac{\mathrm{~d} \mathbf{T}}{\mathrm{~d} s}=-\frac{1}{4} \sin \frac{s}{2} \mathbf{j}+\frac{1}{4} \cos \frac{s}{2} \mathbf{k} \\
\kappa=\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}\right\|=\sqrt{\left(-\frac{1}{4} \sin \frac{s}{2}\right)^{2}+\left(\frac{1}{4} \cos \frac{s}{2}\right)^{2}}=\frac{1}{4}
\end{gathered}
$$

Alternatively, $\kappa=\frac{\left\|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right\|}{\left\|\mathbf{r}^{\prime}\right\|^{3}}=\left\|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right\|$ since $\left\|\mathbf{r}^{\prime}\right\|=1$ due to the fact that this is an arc length parameterization. Thus

$$
\kappa=\left\|\left.\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\sqrt{3} / 2 & \frac{1}{2} \cos \frac{s}{2} & \frac{1}{2} \sin \frac{s}{2} \\
0 & -\frac{1}{4} \sin \frac{s}{2} & \frac{1}{4} \cos \frac{s}{2}
\end{array} \right\rvert\,\right\|=\left\|\left(\frac{1}{8} \cos ^{2} \frac{s}{2}+\frac{1}{8} \sin ^{2} \frac{s}{2}\right) \mathbf{i}-\frac{\sqrt{3}}{8} \cos \frac{s}{2} \mathbf{j}-\frac{\sqrt{3}}{8} \sin \frac{s}{2} \mathbf{k}\right\|=\sqrt{\frac{1}{64}+\frac{3}{64}}=\frac{1}{4}
$$

(d) FALSE The maximum rate of change of f at the point in question is $\|\nabla f(1,-1,1)\|$.

$$
\begin{gathered}
\nabla f(x, y, z)=\left\langle\frac{2 x}{x^{2}+y^{3}+z^{4}}, \frac{3 y^{2}}{x^{2}+y^{3}+z^{4}}, \frac{4 z^{3}}{x^{2}+y^{3}+z^{4}}\right\rangle \\
\nabla f(1,-1,1)=\langle 2,3,4\rangle \\
\|\nabla f(1,-1,1)\|=\sqrt{2^{2}+3^{2}+4^{2}}=\sqrt{29}
\end{gathered}
$$

Since $10>\sqrt{29}$, there is no direction that will provide a rate of change of f with respect to distance at the point $(1,-1,1)$ equal to 10 .
(e) TRUE With $G(x, y, z)=x^{2}+y^{2}-z^{2}, \nabla G=\langle 2 x, 2 y,-2 z\rangle \Longrightarrow \nabla G(P)=\langle 4,2,2\rangle$. Then
normal line: $\langle 2,1,-1\rangle+t\langle 4,2,2\rangle=\langle 4 t+2,2 t+1,2 t-1\rangle$
tangent plane: $4(x-2)+2(y-1)+2(z+1)=0 \Longrightarrow 2 x-4+y-1+z+1=0 \Longrightarrow 2 x+y+z=4$
(f) FALSE They never experience a normal component of acceleration since their direction never changes. However, they can experience a nonzero tangential acceleration.
2. [2350/121923 (20 pts)] You are going on a trip and want to maximize the space in your carry-on suitcase, assumed to be in the shape of a rectangular box. Find the dimensions of the suitcase of maximum volume if the sum of the suitcase's width (w), height (h) and two times its length (l) is 120 cm . No credit for using Lagrange Multipliers. Instead, solve this as a two dimensional optimization problem, verifying your result using the Second Derivatives Test.

Solution:

With the dimensions of the suitcase being w, h, and $l, w+h+2 l=120$. The suitcase's volume is $V(l, w, h)=l w h$. Combining these we get $V(l, w)=l w(120-2 l-w)=120 l w-2 l^{2} w-l w^{2}$. (Note: The volume could have been written as a function of h and w or h and l.)

$$
\begin{align*}
& V_{l}=120 w-4 l w-w^{2}=w(120-4 l-w)=0 \tag{1}\\
& V_{w}=120 l-2 l^{2}-2 l w=l(120-2 l-2 w)=0 \tag{2}
\end{align*}
$$

We can safely assume that $w>0$ and $l>0$, otherwise no suitcase would exist. Solving the parenthetical portion of Eq. (1) for w and using this in the parenthetical portion of Eq. (2) yields

$$
\begin{gathered}
w=120-4 l \\
120-2 l-2(120-4 l)=0 \\
-120+6 l=0 \\
l=20 \Longrightarrow w=120-80=40 \Longrightarrow h=120-2(20)-40=40
\end{gathered}
$$

Apply the Second Derivatives Test to classify the critical point $(l, w)=(20,40)$.

$$
\begin{gathered}
V_{l l}=-4 w \\
V_{w w}=-2 l \\
V_{l w}=V_{w l}=120-4 l-2 w \\
D(20,40)=V_{l l}(20,40) V_{w w}(20,40)-\left[V_{l w}(20,40)\right]^{2} \\
=[-4(40)(-2)(20)]-[120-4(20)-2(40)]^{2}=(160)(40)-(-40)^{2} \\
=40(160-40)>0 \text { and } V_{l l}(20,40)=-4(40)<0
\end{gathered}
$$

so that the critical point gives a local maximum. The suitcase's dimensions are $l \times w \times h=20 \times 40 \times 40 \mathrm{~cm}$.
3. [2350/121923 (25 pts)] The Hundred Acre Wood is under the influence of the vector field $\mathbf{F}=e^{y} \mathbf{i}+\left(x e^{y}+\sin z\right) \mathbf{j}+y \cos z \mathbf{k}$. Consider the points $M(0,1,0)$ and $N(\pi, 3,2 \pi)$ in the forest.
(a) (8 pts) Winnie the Pooh waddles along the path $\mathbf{r}(t)=\left[\frac{\pi}{2}(t-1)\right] \mathbf{i}+t \mathbf{j}+\pi(t-1) \mathbf{k}$ between the points. Set up and simplify, but do not evaluate, the integral that will directly compute the amount of work Pooh does in waddling along the path from point M to point N. Pooh's friends Kanga and Roo offer to help you with the simplification by telling you that $\sin [\pi(t-1)]=-\sin \pi t$ and $\cos [\pi(t-1)]=-\cos \pi t$.
(b) (14 pts) Pooh's gloomy friend Eeyore watches as Tigger bounces along the path $(t-\sin 4 t) \mathbf{i}+(2-\cos 3 t) \mathbf{j}+2 t \mathbf{k}, 0 \leq t \leq \pi$ and Owl flies along the path $\sqrt{\frac{t^{3}}{8 \pi}} \mathbf{i}+\left(1+\frac{t}{\pi} e^{\pi-t / 2}\right) \mathbf{j}+t \mathbf{k}, 0 \leq t \leq 2 \pi$. Both of these paths begin at point M and end at point N. Eeyore claims that both Tigger and Owl did the same amount of work, W, as Pooh did and announces that an important Calculus 3 theorem can be used to compute W. Show that Eeyore is correct and use the theorem to find W. Hint: No difficult integration is required.
(c) (3 pts) Finally, Pooh's other acquaintance, Gopher, crawls from point N to the point $(2,3,50)$ then tunnels underground back to point N. How much work did he do?

SOLUTION:

(a) Note that t runs from 1 to 3 .

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\left\langle\frac{\pi}{2}, 1, \pi\right\rangle \\
\mathbf{F}(\mathbf{r}(t))=\left\langle e^{t}, \frac{\pi}{2}(t-1) e^{t}+\sin \pi(t-1), t \cos \pi(t-1)\right\rangle \\
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=\left\langle e^{t}, \frac{\pi}{2}(t-1) e^{t}+\sin \pi(t-1), t \cos \pi(t-1)\right\rangle \cdot\left\langle\frac{\pi}{2}, 1, \pi\right\rangle \\
=\frac{\pi}{2} e^{t}+\frac{\pi}{2}(t-1) e^{t}+\sin \pi(t-1)+\pi t \cos \pi(t-1) \\
=\frac{\pi}{2} t e^{t}-\sin \pi t-\pi t \cos \pi t \\
\text { Work }=\int_{1}^{3}\left(\frac{\pi}{2} t e^{t}-\sin \pi t-\pi t \cos \pi t\right) \mathrm{d} t
\end{gathered}
$$

(b) The fact the work is the same along the three paths suggests that the vector field may be conservative. It's defined throughout \mathbb{R}^{3}, a simply connected region. Moreover,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
e^{y} & x e^{y}+\sin z & y \cos z
\end{array}\right|=\cos z \mathbf{i}+0 \mathbf{j}+e^{y} \mathbf{k}-\left(e^{y} \mathbf{k}+\cos z \mathbf{i}+0 \mathbf{j}\right)=\mathbf{0}
$$

Thus, \mathbf{F} is conservative and consequently can be written as $\mathbf{F}=\nabla f$ for some potential function f. We find f.

$$
\begin{gathered}
f(x, y, z)=\int e^{y} \mathrm{~d} x=x e^{y}+g(y, z) \\
f_{y}=x e^{y}+g_{y}(y, z)=x e^{y}+\sin z \Longrightarrow g_{y}(y, z)=\sin z \Longrightarrow g(y, z)=\int \sin z \mathrm{~d} y=y \sin z+h(z) \\
f(x, y, z)=x e^{y}+y \sin z+h(z) \\
f_{z}=y \cos z+h^{\prime}(z)=y \cos z \Longrightarrow h^{\prime}(z)=0 \Longrightarrow h(z)=c \\
f(x, y, z)=x e^{y}+y \sin z+c
\end{gathered}
$$

We can now use the Fundamental Theorem of Line Integrals to find the work as

$$
\text { Work }=\int_{(0,1,0)}^{(\pi, 3,2 \pi)} \nabla f \cdot \mathrm{~d} \mathbf{r}=f(\pi, 3,2 \pi)-f(0,1,0)=\pi e^{3}+3 \sin 2 \pi+c-\left(0 e^{1}+1 \sin 0+c\right)=\pi e^{3}
$$

(c) Since the field is conservative and Gopher's path is closed, he does 0 net work.
4. [2350/121923 (20 pts)] Use Stokes' Theorem to find the circulation of $\mathbf{V}=-2 y z \mathbf{j}+6 y z \mathbf{k}$ around \mathcal{C}, the intersection of the plane $x+2 y+6 z=1$ with the first octant, oriented clockwise when viewed from above.

SOLUTION:

Here is a sketch of the curve and the surface.

$$
\begin{aligned}
& \nabla \times \mathbf{V}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
0 & -2 y z & 6 y z
\end{array}\right|=(6 z+2 y) \mathbf{i} \\
& g(x, y, z)=x+2 y+6 z \Longrightarrow \nabla g=\langle 1,2,6\rangle \quad \text { use }-\nabla g \text { for proper orientation } \\
& \text { project onto the } x y \text {-plane } \Longrightarrow \mathbf{p}=\mathbf{k},|\nabla g \cdot \mathbf{p}|=6 \text { with } \mathcal{R} \text { shown below } \\
& \text { Circulation }=\oint_{\mathcal{C}} \mathbf{V} \cdot \mathrm{d} \mathbf{r}=\iint_{\mathcal{S}}(\nabla \times \mathbf{V}) \cdot \mathbf{n} \mathrm{d} S=\iint_{\mathcal{R}} \nabla \times \mathbf{V} \cdot\left(\frac{-\nabla g}{|\nabla g \cdot \mathbf{k}|}\right) \mathrm{d} A \\
& =\iint_{\mathcal{R}}\langle 2 y+6 z, 0,0\rangle \cdot \frac{\langle-1,-2,-6\rangle}{6} \mathrm{~d} A \\
& \left.=-\frac{1}{6} \iint_{\mathcal{R}}(2 y+6 z) \mathrm{d} A \quad \text { (use surface to eliminate } z\right) \\
& =-\frac{1}{6} \int_{0}^{1} \int_{0}^{(1-x) / 2}(1-x) \mathrm{d} y \mathrm{~d} x \\
& =-\frac{1}{12} \int_{0}^{1}(1-x)^{2} \mathrm{~d} x \\
& =\left.\frac{1}{36}(1-x)^{3}\right|_{0} ^{1}=-\frac{1}{36}
\end{aligned}
$$

Alternatively, Circulation $=-\frac{1}{6} \int_{0}^{1 / 2} \int_{0}^{1-2 y}(1-x) \mathrm{d} x \mathrm{~d} y$. Furthermore, one could also project onto either the $x z$ - or $y z$-plane.
5. [2350/121923 (33 pts)] Consider the vector field $\mathbf{F}(x, y)=x^{2} y \mathbf{i}+x y^{2} \mathbf{j}$ and the following figure. As shown below, \mathcal{D} has oriented boundary $\partial \mathcal{D}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}$.

(a) (6 pts) Compute $\mathbf{k} \cdot \nabla \times \mathbf{F}$ and determine if this function attains an absolute maximum and minimum value on the region $\mathcal{D} \cup \partial \mathcal{D}$. Do not find these values, if they exist, simply justify your answer in a few words.
(b) (3 pts) Without doing any integration, explain in words why there is no flux through or flow along \mathcal{C}_{1} and \mathcal{C}_{2}.
(c) (10 pts) Using the parameterization $x=-t, y=-t+1$, evaluate $\int_{\mathcal{C}_{3}} P \mathrm{~d} y-Q \mathrm{~d} x$.
(d) (4 pts) Using your answers to parts (b) and (c), what is $\int_{\partial \mathcal{D}} \mathbf{F} \cdot \mathbf{n} \mathrm{d} s$? Hint: no integration is required.
(e) (10 pts) Find the flux through $\partial \mathcal{D}$ using Green's Theorem.

SOLUTION:

(a)

$$
\mathbf{k} \cdot \nabla \times \mathbf{F}=\mathbf{k} \cdot\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
x^{2} y & x y^{2} & 0
\end{array}\right|=\mathbf{k} \cdot\left(y^{2}-x^{2}\right) \mathbf{k}=y^{2}-x^{2}=\frac{\partial Q}{\partial y}-\frac{\partial P}{\partial y}
$$

Since $y^{2}-x^{2}$ is continuous everywhere, it is continuous on $\mathcal{D} \cup \partial D$, a closed, bounded set and thus an absolute maximum and minimum value of $\mathbf{k} \cdot \nabla \times \mathbf{F}$ are guaranteed to exist by the Extreme Value Theorem.
(b) $\mathbf{F}=\mathbf{0}$ on both curves.
(c) To trace out \mathcal{C}_{3}, we need $0 \leq t \leq 1$. $P=x^{2} y=(-t)^{2}(-t+1)=-t^{3}+t^{2}, Q=x y^{2}=-t(-t+1)^{2}=-t^{3}+2 t^{2}-t, \mathrm{~d} x=-\mathrm{d} t$ and $\mathrm{d} y=-\mathrm{d} t$. Then

$$
\begin{aligned}
\int_{\mathcal{C}_{3}} P \mathrm{~d} y- & Q \mathrm{~d} x=\int_{0}^{1}\left(-t^{3}+t^{2}\right)(-\mathrm{d} t)-\left(-t^{3}+2 t^{2}-t\right)(-\mathrm{d} t) \\
& =\int_{0}^{1}\left(t^{2}-t\right) \mathrm{d} t=\left.\left(\frac{1}{3} t^{3}-\frac{1}{2} t^{2}\right)\right|_{0} ^{1}=-\frac{1}{6}
\end{aligned}
$$

(d)

$$
\int_{\partial \mathcal{D}} \mathbf{F} \cdot \mathbf{n} \mathrm{d} s=\int_{\mathcal{C}_{1}} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} s+\int_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} s+\int_{\mathcal{C}_{3}} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} s=0+0-\frac{1}{6}=-\frac{1}{6}
$$

(e)

$$
\begin{aligned}
\text { Flux } & =\iint_{\mathcal{D}}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) \mathrm{d} A=\int_{-1}^{0} \int_{0}^{x+1} 4 x y \mathrm{~d} y \mathrm{~d} x \\
& =-\left.4 \int_{-1}^{0} x \frac{y^{2}}{2}\right|_{0} ^{x+1} \mathrm{~d} x=2 \int_{-1}^{0}\left(x^{3}+2 x^{2}+x\right) \mathrm{d} x \\
& =\left.2\left(\frac{1}{4} x^{4}+\frac{2}{3} x^{3}+\frac{1}{2} x^{2}\right)\right|_{-1} ^{0}=-2\left(\frac{1}{4}-\frac{2}{3}+\frac{1}{2}\right)=-\frac{1}{6}
\end{aligned}
$$

6. [2350/121923 (28 pts)] Consider the surface $z=x^{2}+y^{2}$ and vector field $\mathbf{E}=x \mathbf{i}+y \mathbf{j}+2 z\left(x^{2}+y^{2}\right) \mathbf{k}$.
(a) (3 pts) Name the surface.
(b) (25 pts) Let \mathcal{S} be that portion of $z=x^{2}+y^{2}$ with $0 \leq z \leq 1$ and let \mathcal{S}_{1} be the disk $x^{2}+y^{2} \leq 1$ lying in the plane $z=1$. Then $\mathcal{S} \cup \mathcal{S}_{1}$ is a closed surface enclosing the solid region \mathcal{W}.
i. (10 pts) Compute the upward flux of \mathbf{E} through \mathcal{S}_{1}.
ii. (10 pts) Compute $\iiint_{\mathcal{W}} \nabla \cdot \mathbf{E} \mathrm{d} V$.
iii. (5 pts) Use Gauss' Divergence Theorem to find the downward flux of \mathbf{E} through \mathcal{S}, which is not a closed surface. Hint: no integration is necessary.

SOLUTION:

(a) circular paraboloid
(b) i. We find the upward flux of \mathbf{E} through $\mathcal{S}_{1}, \iint_{\mathcal{S}_{1}} \mathbf{E} \cdot \mathbf{n} \mathrm{~d} S$, by projecting \mathcal{S}_{1}, given by $g(x, y, z)=z$, onto the $x y$-plane.

$$
\begin{aligned}
& g(x, y, z)=z, \nabla g=\mathbf{k}, \mathcal{R}: x^{2}+y^{2} \leq 1, \mathbf{p}=\mathbf{k},|\nabla g \cdot \mathbf{p}|=1 \\
& \iint_{\mathcal{S}_{1}} \mathbf{E} \cdot \mathbf{n} \mathrm{~d} S=\iint_{\mathcal{R}} \mathbf{E} \cdot \frac{+\nabla g}{|\nabla g \cdot \mathbf{p}|} \mathrm{d} A=\iint_{\mathcal{R}}\left\langle x, y, 2 z\left(x^{2}+y^{2}\right)\right\rangle \cdot \frac{\langle 0,0,1\rangle}{1} \mathrm{~d} A=\iint_{\mathcal{R}} 2 z\left(x^{2}+y^{2}\right) \mathrm{d} A
\end{aligned}
$$

(switch to polar coordinates and eliminate z using the surface $z=1$)

$$
=2 \int_{0}^{2 \pi} \int_{0}^{1} r^{3} \mathrm{~d} r \mathrm{~d} \theta=\left.4 \pi \frac{r^{4}}{4}\right|_{0} ^{1}=\pi
$$

ii. We have $\nabla \cdot \mathbf{E}=1+1+2\left(x^{2}+y^{2}\right)=2\left(1+x^{2}+y^{2}\right)$ so that, using cylindrical coordinates,

$$
\begin{aligned}
& \iiint_{\mathcal{W}} 2\left(1+x^{2}+y^{2}\right) \mathrm{d} V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{1} 2\left(1+r^{2}\right) r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta \\
= & \left.2 \int_{0}^{2 \pi} \int_{0}^{1}\left(r+r^{3}\right) z\right|_{r^{2}} ^{1} \mathrm{~d} r \mathrm{~d} \theta=2 \int_{0}^{2 \pi} \int_{0}^{1}\left(r+r^{3}\right)\left(1-r^{2}\right) \mathrm{d} r \mathrm{~d} \theta \\
= & 2 \int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{5}\right) \mathrm{d} r \mathrm{~d} \theta=\left.2 \int_{0}^{2 \pi}\left(\frac{r^{2}}{2}-\frac{r^{6}}{6}\right)\right|_{0} ^{1} \mathrm{~d} \theta=\frac{2}{3} \int_{0}^{2 \pi} \mathrm{~d} \theta=\frac{4 \pi}{3}
\end{aligned}
$$

iii. The downward flux through \mathcal{S} and the upward flux through \mathcal{S}_{1} correspond to the outward pointing normal of the closed surface $\mathcal{S} \cup \mathcal{S}_{1}$ to which Gauss' Divergence Theorem can be directly applied.

$$
\begin{gathered}
\iint_{\mathcal{S} \cup \mathcal{S}_{1}} \mathbf{E} \cdot \mathbf{n} \mathrm{~d} S=\iint_{\mathcal{S}} \mathbf{E} \cdot \mathbf{n} \mathrm{d} S+\iint_{\mathcal{S}_{1}} \mathbf{E} \cdot \mathbf{n} \mathrm{~d} S=\iiint_{\mathcal{W}} \nabla \cdot \mathbf{E} \mathrm{d} V \\
\iint_{\mathcal{S}} \mathbf{E} \cdot \mathbf{n} \mathrm{d} S=\iiint_{\mathcal{W}} \nabla \cdot \mathbf{E} \mathrm{d} V-\iint_{\mathcal{S}_{1}} \mathbf{E} \cdot \mathbf{n} \mathrm{~d} S=\frac{4 \pi}{3}-\pi=\frac{\pi}{3}
\end{gathered}
$$

