1. [2350/112923 (15 pts)] Write the word TRUE or FALSE as appropriate. Write your answers in a single column separate from any work you do. No work need be shown. No partial credit given.
(a) The area of one side of a fence built on the curve $y=x^{2}$ in the $z=0$ plane for $0 \leq x \leq 3$ with height $z=f(x, y)=1+4 y$ is $\int_{0}^{3}\left(1+4 t^{2}\right) \mathrm{d} t$
(b) The vector field $\mathbf{V}=(y-2) \mathbf{i}+(x+1) \mathbf{j}$ is shown in the accompanying figure.

(c) Any vector field of the form $f(y, z) \mathbf{i}+g(x, z) \mathbf{j}+h(x, y) \mathbf{k}$, where the appropriate partial derivatives of f, g, h exist, is incompressible.
(d) For any vector field $\mathbf{F}, \nabla \cdot(\nabla \times \mathbf{F})=\nabla \times(\nabla \cdot \mathbf{F})$.
(e) If a vector field \mathbf{V} has only \mathbf{i} - and \mathbf{k}-components, both of which are functions of only x and z and whose partial derivatives are nonzero, then the curl of \mathbf{V} will have only a \mathbf{j}-component.

SOLUTION:

(a) FALSE The area is given by $\int_{\mathcal{C}} f(x, y) \mathrm{d} s$. With $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle, \mathbf{r}^{\prime}(t)=\langle 1,2 t\rangle,\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{1+4 t^{2}}$. Then

$$
\int_{\mathcal{C}}(1+4 y) \mathrm{d} s=\int_{0}^{3} f(\mathbf{r}(t))\left\|\mathbf{r}^{\prime}(t)\right\| \mathrm{d} t=\int_{0}^{3}\left(1+4 t^{2}\right)^{3 / 2} \mathrm{~d} t
$$

(b) TRUE
(c) TRUE

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial f(y, z)}{\partial x}+\frac{\partial g(x, z)}{\partial y}+\frac{\partial h(x, y)}{\partial z}=0+0+0=0
$$

(d) FALSE $\nabla \times(\nabla \cdot \mathbf{F})$ is not defined
(e) TRUE $\mathbf{V}=f(x, z) \mathbf{i}+g(x, z) \mathbf{k}$. Then

$$
\operatorname{curl} \mathbf{V}=\nabla \times \mathbf{V}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
f(x, z) & 0 & g(x, z)
\end{array}\right|=\left(\frac{\partial f}{\partial z}-\frac{\partial g}{\partial x}\right) \mathbf{j}
$$

2. [2350/112923 (16 pts)] You need to compute $G=\int_{\mathcal{R}} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} \mathrm{~d} A$, where \mathcal{R} is region in the first quadrant bounded by the curves

$$
x^{2}+y^{2}=4, \quad x^{2}+y^{2}=8, \quad x^{2}-y^{2}=2, \quad x^{2}-y^{2}=-2
$$

(a) (2 pts) Describe in words what the quantity G represents.
(b) (14 pts) Use the change of variables $u=\frac{1}{2}\left(x^{2}+y^{2}\right)$ and $v=\frac{1}{2}\left(x^{2}-y^{2}\right)$ to set up, but not evaluate, an appropriate integral to compute G.

SOLUTION:

(a) The signed volume of the solid lying between the function $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ and the $x y$-plane above/below the region \mathcal{R}.
(b) With $u=\frac{1}{2}\left(x^{2}+y^{2}\right)$ and $v=\frac{1}{2}\left(x^{2}-y^{2}\right)$, the new region of integration is $2 \leq u \leq 4$ and $-1 \leq v \leq 1$ and

$$
\begin{gathered}
u+v=x^{2} \Longrightarrow x=\sqrt{u+v} \text { and } u-v=y^{2} \Longrightarrow y=\sqrt{u-v} \\
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
\frac{1}{2 \sqrt{u+v}} & \frac{1}{2 \sqrt{u+v}} \\
\frac{1}{2 \sqrt{u-v}} & -\frac{1}{2 \sqrt{u-v}}
\end{array}\right|=\frac{-1}{2 \sqrt{(u+v)(u-v)}}=\frac{-1}{2 \sqrt{u^{2}-v^{2}}} \\
x^{2}+y^{2}=u+v+u-v=2 u \text { and } x^{2}-y^{2}=u+v-(u-v)=2 v \\
G=\int_{-1}^{1} \int_{2}^{4} \frac{2 v}{2 u}\left|\frac{-1}{2 \sqrt{u^{2}-v^{2}}}\right| \mathrm{d} u \mathrm{~d} v=\int_{-1}^{1} \int_{2}^{4} \frac{v}{2 u \sqrt{u^{2}-v^{2}}} \mathrm{~d} u \mathrm{~d} v=\int_{2}^{4} \int_{-1}^{1} \frac{v}{2 u \sqrt{u^{2}-v^{2}}} \mathrm{~d} v \mathrm{~d} u
\end{gathered}
$$

3. [2350/112923 (25 pts)] Winnie the Pooh has his eyes on a honey-filled beehive in the shape of $4 z=4-x^{2}-y^{2}$. He can see the portion of the hive between the planes $y=x$ and $y=-x$ where $y \geq 0$. The surface of the hive is covered with bees and his friend Rabbit tells him that the density of the bees is $\delta(x, y, z)=100 y^{2} / \sqrt{x^{2}+y^{2}+4}$ bees per square centimeter. He also reminds him that $\sin ^{2} x=(1-\cos 2 x) / 2$. How many bees does Pooh see? (it won't be a whole number, but that's ok)

SOLUTION:

To find the number of bees, we need to compute a scalar surface integral, $\iint_{\mathcal{S}} \delta(x, y, z) \mathrm{d} S$, where \mathcal{S} is the surface of the hive, given by $g(x, y, z)=x^{2}+y^{2}+4 z=4$. We will project the surface onto the $x y$-plane so that $\mathbf{p}=\mathbf{k}$. The region of integration, \mathcal{R}, is shown below:

Moreover,

$$
\nabla g=\langle 2 x, 2 y, 4\rangle \Longrightarrow\|\nabla g\|=\sqrt{4 x^{2}+4 y^{2}+16}=2 \sqrt{x^{2}+y^{2}+4} \text { and }|\nabla g \cdot \mathbf{p}|=4
$$

Thus,

$$
\text { Number of bees }=\iint_{\mathcal{S}} \frac{100 y^{2}}{\sqrt{x^{2}+y^{2}+4}} \mathrm{~d} S=\iint_{\mathcal{R}} \frac{100 y^{2}}{\sqrt{x^{2}+y^{2}+4}}\left(\frac{2 \sqrt{x^{2}+y^{2}+4}}{4}\right) \mathrm{d} A=50 \iint_{\mathcal{R}} y^{2} \mathrm{~d} A
$$

This integral is an obvious candidate for polar coordinates. Making this transformation gives

$$
\begin{aligned}
50 \iint_{\mathcal{R}} y^{2} \mathrm{~d} A & =50 \int_{\pi / 4}^{3 \pi / 4} \int_{0}^{2} r^{3} \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \theta \\
& =50 \int_{\pi / 4}^{3 \pi / 4}\left(\frac{1-\cos 2 \theta}{2}\right) \mathrm{d} \theta\left(\int_{0}^{2} r^{3} \mathrm{~d} r\right) \\
& =\left.\left.25\left(\theta-\frac{1}{2} \sin 2 \theta\right)\right|_{\pi / 4} ^{3 \pi / 4}\left(\frac{r^{4}}{4}\right)\right|_{0} ^{2} \\
& =100\left(\frac{\pi}{2}+1\right)=50 \pi+100 \text { bees }
\end{aligned}
$$

Had the conversion to polar coordinates not been made, much more effort is required to evaluate the following:

$$
\text { Number of bees }=\int_{-\sqrt{2}}^{0} \int_{-x}^{\sqrt{4-x^{2}}} y^{2} \mathrm{~d} y \mathrm{~d} x+\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}} y^{2} \mathrm{~d} y \mathrm{~d} x
$$

4. [2350/112923 (24 pts)] A constant θ slice through a delicious red velvet cupcake is shown in the following figure. The top of the cupcake is a portion of $x^{2}+y^{2}+(z-\sqrt{3})^{2}=3$ and the mass density of the cupcake is $\delta(x, y, z)=y^{2} /(z+1)$. Set up, do not evaluate, integral(s) to compute the following, using the given integration order.

(a) (4 pts) The mass of the portion of the cupcake above the plane $z=\sqrt{3}, \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y$.
(b) (8 pts) The mass of the entire cupcake, $\mathrm{d} z \mathrm{~d} r \mathrm{~d} \theta$.
(c) (12 pts) The mass of the entire cupcake, $\mathrm{d} \rho \mathrm{d} \phi \mathrm{d} \theta$.

SOLUTION:

(a)

$$
\text { Mass }=\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-y^{2}}}^{\sqrt{3-y^{2}}} \int_{\sqrt{3}}^{\sqrt{3}+\sqrt{3-x^{2}-y^{2}}} \frac{y^{2}}{z+1} \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y
$$

(b) Two alternatives.

$$
\text { Mass }=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{3}+\sqrt{3-r^{2}}} \frac{r^{3} \sin ^{2} \theta}{z+1} \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta+\int_{0}^{2 \pi} \int_{1}^{\sqrt{3}} \int_{\sqrt{3}}^{\sqrt{3}+\sqrt{3-r^{2}}} \frac{r^{3} \sin ^{2} \theta}{z+1} \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

$$
\text { Mass }=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{3}} \frac{r^{3} \sin ^{2} \theta}{z+1} \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta+\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{\sqrt{3}}^{\sqrt{3}+\sqrt{3-r^{2}}} \frac{r^{3} \sin ^{2} \theta}{z+1} \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta
$$

(c)

$$
\begin{aligned}
& \text { Mass }=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{2 \sqrt{3} \cos \phi} \frac{\rho^{4} \sin ^{3} \phi \sin ^{2} \theta}{\rho \cos \phi+1} \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta+\int_{0}^{2 \pi} \int_{\pi / 6}^{\pi / 4} \int_{\sqrt{3} \sec \phi}^{2 \sqrt{3} \cos \phi} \frac{\rho^{4} \sin ^{3} \phi \sin ^{2} \theta}{\rho \cos \phi+1} \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \\
& +\int_{0}^{2 \pi} \int_{\pi / 6}^{\pi / 2} \int_{0}^{\csc \phi} \frac{\rho^{4} \sin ^{3} \phi \sin ^{2} \theta}{\rho \cos \phi+1} \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta
\end{aligned}
$$

5. [2350/112923 (20 pts)] A thin triangular plate (lamina) lying in the $x y$-plane with density $\rho(x, y)=2 y$ is bounded by the lines $y=1$, $y=2-x$ and $y=2+x$. The mass of the lamina is $m=8 / 3$.
(a) (8 pts) Find the moment of inertia about the x-axis, integrating with respect to x first.
(b) (8 pts) Find the moment of inertia about the y-axis, integrating with respect to y first.
(c) $(4 \mathrm{pts})$ Find the radii of gyration with respect to the x - and y-axes.

Solution:

Sketch of the plate.

(a)

$$
\begin{aligned}
I_{x} & =\iint_{\text {lamina }} y^{2} \rho(x, y) \mathrm{d} A=\int_{1}^{2} \int_{y-2}^{2-y} 2 y^{3} \mathrm{~d} x \mathrm{~d} y \\
& =\left.2 \int_{1}^{2} y^{3} x\right|_{y-2} ^{2-y} \mathrm{~d} y=2 \int_{1}^{2}\left(4 y^{3}-2 y^{4}\right) \mathrm{d} y \\
& =\left.2\left(y^{4}-\frac{2}{5} y^{5}\right)\right|_{1} ^{2}=\frac{26}{5}
\end{aligned}
$$

(b) We can exploit symmetry across the y-axis here since the density is independent of x.

$$
\begin{aligned}
I_{y} & =\iint_{\text {lamina }} x^{2} \rho(x, y) \mathrm{d} A=\int_{-1}^{0} \int_{1}^{2+x} 2 x^{2} y \mathrm{~d} y \mathrm{~d} x+\int_{0}^{1} \int_{1}^{2-x} 2 x^{2} y \mathrm{~d} y \mathrm{~d} x=2 \int_{0}^{1} \int_{1}^{2-x} 2 x^{2} y \mathrm{~d} y \mathrm{~d} x \\
& =\left.2 \int_{0}^{1} x^{2} y^{2}\right|_{1} ^{2-x} \mathrm{~d} x=2 \int_{0}^{1} x^{2}\left[(2-x)^{2}-1\right] \mathrm{d} x=2 \int_{0}^{1}\left(x^{4}-4 x^{3}+3 x^{2}\right) \mathrm{d} x \\
& =\left.2\left(\frac{x^{5}}{5}-x^{4}+x^{3}\right)\right|_{0} ^{1}=\frac{2}{5}
\end{aligned}
$$

(c)
radius of gyration with respect to the x-axis : $\overline{\bar{y}}=\sqrt{\frac{I_{x}}{m}}=\sqrt{\frac{26 / 5}{8 / 3}}=\sqrt{\frac{39}{20}}=\frac{1}{2} \sqrt{\frac{39}{5}}=\frac{\sqrt{195}}{10}$
radius of gyration with respect to the y-axis : $\overline{\bar{x}}=\sqrt{\frac{I_{y}}{m}}=\sqrt{\frac{2 / 5}{8 / 3}}=\sqrt{\frac{3}{20}}=\frac{1}{2} \sqrt{\frac{3}{5}}=\frac{\sqrt{15}}{10}$

