APPM 2350

Exam 3

- This exam is worth 100 points and has 5 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- **DO NOT** leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. **NO** calculators, cell phones, or other electronic devices or the internet are permitted during the exam. You are allowed one 8.5"× 11" crib sheet with writing on one side.
- 0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." FAILURE TO INCLUDE THIS STATEMENT AND YOUR SIGNATURE MAY RESULT IN A PENALTY.
- 1. [2350/112923 (15 pts)] Write the word **TRUE** or **FALSE** as appropriate. Write your answers in a single column separate from any work you do. No work need be shown. No partial credit given.
 - (a) The area of one side of a fence built on the curve $y = x^2$ in the z = 0 plane for $0 \le x \le 3$ with height z = f(x, y) = 1 + 4y is $\int_{-\infty}^{3} (1 + 4t^2) dt$.
 - (b) The vector field $\mathbf{V} = (y 2)\mathbf{i} + (x + 1)\mathbf{j}$ is shown in the accompanying figure.

- (c) Any vector field of the form $f(y, z) \mathbf{i} + g(x, z) \mathbf{j} + h(x, y) \mathbf{k}$, where the appropriate partial derivatives of f, g, h exist, is incompressible.
- (d) For any vector field $\mathbf{F}, \nabla \cdot (\nabla \times \mathbf{F}) = \nabla \times (\nabla \cdot \mathbf{F}).$
- (e) If a vector field V has only i- and k-components, both of which are functions of only x and z and whose partial derivatives are nonzero, then the curl of V will have only a j-component.
- 2. [2350/112923 (16 pts)] You need to compute $G = \int_{\mathcal{R}} \frac{x^2 y^2}{x^2 + y^2} dA$, where \mathcal{R} is region in the first quadrant bounded by the curves $x^2 + y^2 = 4$, $x^2 + y^2 = 8$, $x^2 y^2 = 2$, $x^2 y^2 = -2$
 - (a) (2 pts) Describe in words what the quantity G represents.
 - (b) (14 pts) Use the change of variables $u = \frac{1}{2} (x^2 + y^2)$ and $v = \frac{1}{2} (x^2 y^2)$ to set up, **but not evaluate**, an appropriate integral to compute *G*.
- 3. [2350/112923 (25 pts)] Winnie the Pooh has his eyes on a honey-filled beehive in the shape of $4z = 4 x^2 y^2$. He can see the portion of the hive between the planes y = x and y = -x where $y \ge 0$. The surface of the hive is covered with bees and his friend Rabbit tells him that the density of the bees is $\delta(x, y, z) = 100y^2/\sqrt{x^2 + y^2 + 4}$ bees per square centimeter. He also reminds him that $\sin^2 x = (1 \cos 2x)/2$. How many bees does Pooh see? (it won't be a whole number, but that's ok)

CONTINUED ON REVERSE

4. [2350/112923 (24 pts)] A constant θ slice through a delicious red velvet cupcake is shown in the following figure. The top of the cupcake is a portion of $x^2 + y^2 + (z - \sqrt{3})^2 = 3$ and the mass density of the cupcake is $\delta(x, y, z) = y^2/(z + 1)$. Set up, **do not evaluate**, integral(s) to compute the following, using the given integration order.

- (a) (4 pts) The mass of the portion of the cupcake above the plane $z = \sqrt{3}$, dz dx dy.
- (b) (8 pts) The mass of the entire cupcake, $dz dr d\theta$.
- (c) (12 pts) The mass of the entire cupcake, $d\rho d\phi d\theta$.
- 5. [2350/112923 (20 pts)] A thin triangular plate (lamina) lying in the xy-plane with density $\rho(x, y) = 2y$ is bounded by the lines y = 1, y = 2 x and y = 2 + x. The mass of the lamina is m = 8/3.
 - (a) (8 pts) Find the moment of inertia about the x-axis, integrating with respect to x first.
 - (b) (8 pts) Find the moment of inertia about the y-axis, integrating with respect to y first.
 - (c) (4 pts) Find the radii of gyration with respect to the x- and y-axes.