
APPM 2350 Final Exam Fall 2022

1. [2350/121222 (21 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.

(a) The error in the quadratic Taylor polynomial for a function g(x, y) is related to gxx, gxy and gyy .

(b) The traces in all planes parallel to all coordinate planes of the function 2z + 5x2 − 3y2 = 0 are parabolas.

(c) The principal unit normal vector, N, for the helical path r(t) = 〈cos t, sin t, t〉 , t ≥ 0 is always parallel to the xy-plane.

(d) The line of intersection of the planes 1
2x+ y + 4z = 10 and x+ 2y + 8z = −10 has direction vector 〈8, 4, 1〉.

(e) The three nonzero vectors a, b, and c, all lie in the same plane if a · (b× c) = 0.

(f) The Cartesian/rectangular (z = −
√
x2 + y2), cylindrical (z = −r) and spherical (φ = 3π/4) equations represent the same

surface.

(g) An object moving with velocity v on a circle of radius 4 experiences a larger normal component of acceleration than one traveling
at the same velocity on a circle of radius 1/4.

SOLUTION:

(a) FALSE The error is related to the third order derivatives.

(b) FALSE The traces for z = constant are hyperbolas or two lines.

(c) TRUE The k-component of N vanishes for all t ≥ 0 as shown below.

r′(t) = 〈− sin t, cos t, 1〉 =⇒ ‖r′(t)‖ =
√
2 =⇒ T(t) =

1√
2
〈− sin t, cos t, 1〉

T′(t) =
1√
2
〈− cos t,− sin t, 0〉 =⇒ ‖T′(t)‖ = 1√

2
=⇒ N(t) = 〈− cos t,− sin t, 0〉

(d) FALSE The planes do not intersect. Note that the normal vectors of the planes,
〈
1
2 , 1, 4

〉
and 〈1, 2, 8〉, are scalar multiples of

one another and thus parallel implying that the planes to do not intersect.

(e) TRUE If a · (b × c) = 0, and the vectors are all nonzero, this means that a is orthogonal to the plane formed by b and c, and
thus must lie in the same plane as b and c since b× c is orthogonal to both b and c and to the plane in which they lie.

(f) TRUE r =
√
x2 + y2 shows the equivalence of the Cartesian and cylindrical equations. Since z = ρ cosφ and r = ρ sinφ, we

have ρ cosφ = −ρ sinφ =⇒ tanφ = −1 =⇒ φ = 3π/4 showing the equivalence of the cylindrical and spherical equations.

(g) FALSE The magnitude of the normal component of the acceleration is proportional to both the curvature of the path and the
square of the velocity, and since the curvature of a circle is the reciprocal of the radius we have aN = κ‖v‖2 = ‖v‖2/r. The
object on the circle of radius 4 will experience a smaller normal component of acceleration than the one on the circle of radius
1/4.
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2. [2350/121222 (30 pts)] Let V =
(
x2 + 4xy

)
i− 6y j be a velocity vector field.

(a) [15 pts] Find the flow of V along the curve C given by y = x2 − x for 0 ≤ x ≤ 1.

(b) [15 pts] Find the total outward flux of V, as a function of a and b, across the boundary of the rectangular region
0 ≤ x ≤ a, 0 ≤ y ≤ b where a, b are positive constants.

SOLUTION:



(a) A parameterization of the curve is r(t) = t i+ (t2 − t) j, 0 ≤ t ≤ 1. Then

V[r(t)] =
[
t2 + 4t(t2 − t)

]
i− 6(t2 − t) j =

(
4t3 − 3t2

)
i+
(
6t− 6t2

)
j

r′(t) = i+ (2t− 1) j

V[r(t)] · r′(t) = 4t3 − 3t2 + 12t2 − 6t− 12t3 + 6t2 = −8t3 + 15t2 − 6t

Flow =

∫
C
V · dr =

∫ 1

0

(
−8t3 + 15t2 − 6t

)
dt =

(
−2t4 + 5t3 − 3t2

) ∣∣∣1
0
= 0

(b) Use Green’s Theorem. Let the rectangular region be denoted by D with boundary ∂D.

Flux =

∫
∂D

(
x2 + 4xy

)
dy − (−6y) dx =

∫∫
D

[
∂

∂x

(
x2 + 4xy

)
+

∂

∂y
(−6y)

]
dA

=

∫ a

0

∫ b

0

(2x+ 4y − 6) dy dx

=

∫ a

0

(
2xy + 2y2 − 6y

) ∣∣∣b
0
dx

=

∫ a

0

(
2bx+ 2b2 − 6b

)
dx

=
(
bx2 + 2b2x− 6bx

) ∣∣∣a
0

= a2b+ 2ab2 − 6ab

If doing this directly, note that there is no component of V normal to the x- or y-axis and thus no flux on those two sides of the
rectangle. Only the sides x = a (C1) and y = b (C2) can contribute to the flux.

C1 : x = a,dx = 0dt; y = t, dy = dt with 0 ≤ t ≤ b∫
C1
P dy −Qdx =

∫ b

0

(
a2 + 4at

)
dt = a2b+ 2ab2

C2 : x = a− t,dx = −dt; y = b,dy = 0dt with 0 ≤ t ≤ a∫
C2
P dy −Qdx =

∫ a

0

−6bdt = −6ab

Flux =

∫
∂D

V · nds =

∫
C1∪C2

P dy −Qdx = a2b+ 2ab2 − 6ab

�

3. [2350/121222 (20 pts)] Let F = (ex sin y − yz) i+ (ex cos y − xz) j+ (z − xy) k.

(a) [6 pts] Show that
∫
C
F · dr = 0 for all closed paths in R3.

(b) [8 pts] Find the potential function f(x, y, z) for the field F.

(c) [6 pts] Calculate the work done by the force F moving an object along the line segment, C, from (0, π/2,−1) to (1, π, 2).

SOLUTION:

(a) We can show this by showing that F is irrotational on a simply-connected domain. Since F is defined throughout R3, a simply-
connected domain, we need to compute curl F.

∇× F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

ex sin y − yz ex cos y − xz z − xy

∣∣∣∣∣∣∣
= [−x− (−x)] i+ [−y − (−y)] j+ [(ex cos y − z)− (ex cos y − z)]k

= 0



(b)

∂f

∂x
= ex sin y − yz =⇒ f(x, y, z) =

∫
(ex sin y − yz) dx = ex sin y − xyz + g(y, z)

∂f

∂y
= ex cos y − xz + gy(y, z) = ex cos y − xz =⇒ gy(y, z) = 0 =⇒ g(y, z) = h(z)

=⇒ f(x, y, z) = ex sin y − xyz + h(z)

∂f

∂z
= −xy + h′(z) = z − xy =⇒ h(z) =

∫
z dz =

1

2
z2 + c

Thus the potential function is f(x, y, z) = ex sin y − xyz + 1
2z

2 + c

(c) Use the Fundamental Theorem for Line Integrals.

Work =

∫
C
F · dr =

∫
C
∇f · dr = f(1, π, 2)− f(0, π/2,−1)

=

[
e1 sinπ − (1)(π)(2) +

1

2
(2)2

]
−
[
e0 sin(π/2)− (0)(π/2)(−1) + 1

2
(−1)2

]

= −2π + 2−
(
1 +

1

2

)
= −2π +

1

2

�

4. [2350/121222 (22 pts)] Consider the vector field F = −3y i + 3x j + z2 k. Let S be that portion of the surface 3x2 + 3y2 − z2 + 1 = 0
lying above the plane z = −

√
13 and below the xy-plane.

(a) [2 pts] Name the surface.

(b) [10 pts] Compute the downward flux of the curl of F through S by directly evaluating
∫∫
S
∇× F · dS.

(c) [10 pts] Compute the quantity in part (b) by evaluating an appropriate line integral.

SOLUTION:

(a) Hyperboloid of two sheets.

(b)

∇× F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

−3y 3x z2

∣∣∣∣∣∣∣ = 6k

We can consider S to be the level surface of g(x, y, z) = 3x2 + 3y2 − z2 where g = −1. Then projecting the surface onto the
xy-plane we have

∇g = 〈6x, 6y,−2z〉

p = k

|∇g · p| = | − 2z|

region of integrationR : 3x2 + 3y2 −
(
−
√
13
)2

= −1 =⇒ x2 + y2 ≤ 4

To properly orient the surface (downward pointing normal vector) we use−∇g since z < 0 on S, implying∇×F·(−∇g) = 12z.
Also, |∇ · p| = −2z, again since z < 0. Then∫∫

S
∇× F · dS =

∫∫
R

12z

−2z
dA = −6

∫∫
x2+y2≤4

dA = −24π



(c) We use Stokes’ Theorem and compute the flow of F along the boundary, ∂S, of S, which is the circle of radius 2 in the plane
z = −

√
13 centered on the z-axis. For proper orientation, ∂S must be traversed clockwise when looking downward. Thus,

r(t) =
〈
2 sin t, 2 cos t,−

√
13
〉
, 0 ≤ t ≤ 2π

F[r(t)] = 〈−6 cos t, 6 sin t, 13〉

r′(t) = 〈2 cos t,−2 sin t, 0〉

F[r(t)] · r′(t) = −12 cos2 t− 12 sin2 t = −12∫∫
S
∇× F · dS =

∫
∂S

F · dr =

∫ 2π

0

−12 dt = −24π
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5. [2350/121222 (27 pts)] Let S be the portion of the surface x2 + y2 + 2z = 16 between the planes z = 0 and z = 6. Let E = 〈y,−x, 2z〉
represent an electric field.

(a) (2 pts) S is a portion of what quadric surface?

(b) (10 pts) Compute the upward flux of the electric field through the surface by evaluating
∫∫
S
E · ndS directly.

(c) (15 pts) The surface S is not closed. However, Gauss’ Divergence Theorem can still be applied to find the flux of E through S.
Apply the theorem to verify your answer to part (b).

SOLUTION:

(a) circular paraboloid

(b) We project the surface onto the xy-plane so that p = k. To find the region of integration,R,

z = 0 : x2 + y2 = 16

z = 6 : x2 + y2 − 12 = 16 =⇒ x2 + y2 = 4

givingR as 4 ≤ x2 + y2 ≤ 16. Furthermore,

g(x, y, z) = x2 + y2 + 2z =⇒ ∇g = 〈2x, 2y, 2〉 points upward for n

|∇g · p| = |2| = 2

E · ∇g = 〈y,−x, 2z〉 · 〈2x, 2y, 2〉 = 2xy − 2xy + 4z = 4z∫∫
S
E · n dS =

∫∫
R

4z

2
dA =

∫∫
R
2z dA =

∫∫
R

(
16− x2 − y2

)
dA switch to polar coordinates

=

∫ 2π

0

∫ 4

2

(
16− r2

)
r dr dθ = (2π)

(
8r2 − r4

4

) ∣∣∣∣∣
4

2

= 72π

(c) Let S1 be the disk x2 + y2 ≤ 4 at z = 6 and S2 be the disk x2 + y2 ≤ 16 at z = 0, then S1 ∪ S2 ∪ S is the closed surface
(boundary, ∂E) of a solid region E to which we can apply Gauss’ Divergence theorem. Thus∫∫

S1∪S2∪S

E · dS =

∫∫
S1

E · n1 dS +

∫∫
S2

E · n2 dS +

∫∫
S
E · ndS =

∫∫
∂E

E · dS =

∫∫∫
E
∇ ·EdV

or ∫∫
S
E · n dS =

∫∫∫
E
∇ ·E−

∫∫
S1

E · n1 dS −
∫∫
S2

E · n2 dS

The last integral on the right hand side is 0 since the vector field has no component normal to S2 (z = 0). For S1(z = 6), we
will project onto the xy-plane giving p1 = k andR1 as x2 + y2 ≤ 4. Also

g1(x, y, z) = z =⇒ ∇g1 = k =⇒ |∇g1 · p1| = 1



with∇g1 providing the proper (outward pointing) orientation for S1. Then

E · ∇g1 = 〈y,−x, 2z〉 · k = 2z

and ∫∫
S1

E · n1 dS =

∫∫
R1

2z dA =

∫∫
R1

2(6) dA = (12)area(R1) = 12π(22) = 48π

The divergence of E is

∇ ·E =
∂

∂x
(y) +

∂

∂y
(−x) + ∂

∂z
(2z) = 2

Cylindrical coordinates will be best for the triple integral. The surface in these coordinates is z = (16 − r2)/2. A sketch of a
constant θ portion of the region E in the rz-plane follows.

2 4

6

r

z

∫∫∫
E
∇ ·EdV = 2

∫∫∫
E
dV

= 2

∫ 2π

0

∫ 6

0

∫ √16−2z

0

r dr dz dθ =

∫ 2π

0

∫ 6

0

(16− 2z) dz dθ = 2π
(
16z − z2

) ∣∣∣6
0
= 120π

Finally then, ∫∫
S
E · ndS = 120π − 48π = 72π

Note: Choosing a different order of integration in the triple integral results in∫∫∫
E
∇ ·EdV = 2

∫ 2π

0

∫ 2

0

∫ 6

0

r dz dr dθ + 2

∫ 2π

0

∫ 4

2

∫ (16−r2)/2

0

r dz dr dθ = 48π + 72π = 120π
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6. [2350/121222 (30 pts)] A square metal plate occupies the region 0 ≤ x ≤ 20, 0 ≤ y ≤ 20. The temperature of the plate is given by
T (x, y) = 3y2 − 2y3 − 3x2 + 6xy. In all of the parts below, be sure to use Calculus 3 concepts. No credit for reducing the problems
to a single variable problem.

(a) [8 pts] An ant is crawling around on the plate, following the curve y = 1 + x2. At the point (1, 2) in the direction of the ant’s
motion, how is the temperature changing with respect to

i. distance?

ii. time?

(b) [10 pts] On this path, will the ant ever experience the warmest temperature in the plate’s interior? Fully justify your answer.

(c) [12 pts] Now suppose the ant is crawling along the portion of x + y = 12 lying on the plate. Find the highest and lowest
temperatures the ant experiences on this new path.

SOLUTION:

(a) Parameterize the ant’s path with r(t) = 〈t, 1 + t2〉 =⇒ r′(t) = 〈1, 2t〉. The path goes through (1, 2) when t = 1. The ant’s

speed then, ds/dt =
√
5, so that a unit vector in the direction of the ant’s path is

1√
5
〈1, 2〉. The gradient of the temperature

function is∇T (x, y) =
〈
−6x+ 6y, 6y − 6y2 + 6x

〉
.



i.

dT

ds

∣∣∣∣∣
(1,2)

= ∇T (1, 2) · 1√
5
〈1, 2〉 = 1√

5
〈6,−6〉 · 〈1, 2〉 = − 6√

5

ii.

dT

dt

∣∣∣∣∣
(1,2)

=
dT

ds

∣∣∣∣∣
(1,2)

ds

dt

∣∣∣∣∣
(1,2)

=

(
− 6√

5

)(√
5
)
= −6

(b) Need to find local maxima, if any exist, and decide if they are on the ant’s path.

Tx = −6x+ 6y =⇒ Txx = −6

Ty = 6y − 6y2 + 6x =⇒ Tyy = 6− 12y

Txy = 6

Tx = 0 =⇒ x = y so that Ty = 0 = 12y − 6y2 = 6y(2− y) =⇒ y = 0, 2

The critical points are thus (0, 0) and (2, 2). Using the second derivatives test

D(0, 0) = (−6)(6− 12(0))− 36 = −72 < 0 =⇒ (0, 0) is a saddle

D(2, 2) = (−6)(6− 12(2))− 36 = 72 > 0 and Txx < 0 =⇒ (2, 2) is a local maximum

The point (2, 2) is not on the ant’s path so it will not experience it.

(c) Use Lagrange Multipliers on this closed bounded set. We have g(x, y) = x+ y =⇒ ∇g = 〈1, 1〉 leading to

−6x+ 6y = λ

6y − 6y2 + 6x = λ

}
=⇒ −6x+ 6y = 6y − 6y2 + 6x =⇒ x =

1

2
y2

Using this in the constraint gives

1

2
y2 + y = 12

y2 + 2y − 24 = (y − 4)(y + 6) = 0 =⇒ y = 4,−6 =⇒ x = 8 and x = 18.

The only critical point on the plate is (8, 4). We also need to check the endpoints of the path, (0, 12) and (12, 0).

T (12, 0) = −3(122) = −432

T (0, 12) = 3(12)2 − 2(123) = 122(3− 2(12)) = 144(−21) = −3024

T (8, 4) = 3(4)2 − 2(43)− 3(82) + 6(8)(4) = 42 [3− 2(4)]− 8 [3(8)− 6(4)] = −80

The warmest temperature the ant experiences is −80 and the coldest is −3024.
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