- This exam is worth 150 points and has 6 problems.
- Show all work and simplify your answers! Answers with no justification will receive no points unless otherwise noted.
- Please begin each problem on a new page.
- DO NOT leave the exam until you have satisfactorily scanned and uploaded your exam to Gradescope.
- You are taking this exam in a proctored and honor code enforced environment. NO calculators, cell phones, or other electronic devices or the internet are permitted. You are allowed one $8.5 " \times 11 "$ crib sheet with writing on two sides.

0. At the top of the first page that you will be scanning and uploading to Gradescope, write the following statement and sign your name to it: "I will abide by the CU Boulder Honor Code on this exam." Failure to include this statement and your signature may result in a penalty.
1. [2350/121222 (21 pts)] Write the word TRUE or FALSE as appropriate. No work need be shown. No partial credit given.
(a) The error in the quadratic Taylor polynomial for a function $g(x, y)$ is related to $g_{x x}, g_{x y}$ and $g_{y y}$.
(b) The traces in all planes parallel to all coordinate planes of the function $2 z+5 x^{2}-3 y^{2}=0$ are parabolas.
(c) The principal unit normal vector, \mathbf{N}, for the helical path $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle, t \geq 0$ is always parallel to the $x y$-plane.
(d) The line of intersection of the planes $\frac{1}{2} x+y+4 z=10$ and $x+2 y+8 z=-10$ has direction vector $\langle 8,4,1\rangle$.
(e) The three nonzero vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}, all lie in the same plane if $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=0$.
(f) The Cartesian/rectangular $\left(z=-\sqrt{x^{2}+y^{2}}\right)$, cylindrical $(z=-r)$ and spherical $(\phi=3 \pi / 4)$ equations represent the same surface.
(g) An object moving with velocity \mathbf{v} on a circle of radius 4 experiences a larger normal component of acceleration than one traveling at the same velocity on a circle of radius $1 / 4$.
2. [2350/121222(30 pts$)]$ Let $\mathbf{V}=\left(x^{2}+4 x y\right) \mathbf{i}-6 y \mathbf{j}$ be a velocity vector field.
(a) [15 pts] Find the flow of \mathbf{V} along the curve \mathcal{C} given by $y=x^{2}-x$ for $0 \leq x \leq 1$.
(b) [15 pts] Find the total outward flux of \mathbf{V}, as a function of a and b, across the boundary of the rectangular region $0 \leq x \leq a, 0 \leq y \leq b$ where a, b are positive constants.
3. $[2350 / 121222(20 \mathrm{pts})]$ Let $\mathbf{F}=\left(e^{x} \sin y-y z\right) \mathbf{i}+\left(e^{x} \cos y-x z\right) \mathbf{j}+(z-x y) \mathbf{k}$.
(a) $[6 \mathrm{pts}]$ Show that $\int_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=0$ for all closed paths in \mathbb{R}^{3}.
(b) [8 pts] Find the potential function $f(x, y, z)$ for the field \mathbf{F}.
(c) [6 pts] Calculate the work done by the force \mathbf{F} moving an object along the line segment, \mathcal{C}, from $(0, \pi / 2,-1)$ to $(1, \pi, 2)$.
4. $[2350 / 121222(22 \mathrm{pts})]$ Consider the vector field $\mathbf{F}=-3 y \mathbf{i}+3 x \mathbf{j}+z^{2} \mathbf{k}$. Let \mathcal{S} be that portion of the surface $3 x^{2}+3 y^{2}-z^{2}+1=0$ lying above the plane $z=-\sqrt{13}$ and below the $x y$-plane.
(a) [2 pts] Name the surface.
(b) [10 pts] Compute the downward flux of the curl of \mathbf{F} through \mathcal{S} by directly evaluating $\iint_{\mathcal{S}} \boldsymbol{\nabla} \times \mathbf{F} \cdot \mathrm{d} \mathbf{S}$.
(c) [10 pts] Compute the quantity in part (b) by evaluating an appropriate line integral.
5. [2350/121222 (27 pts)] Let \mathcal{S} be the portion of the surface $x^{2}+y^{2}+2 z=16$ between the planes $z=0$ and $z=6$. Let $\mathbf{E}=\langle y,-x, 2 z\rangle$ represent an electric field.
(a) (2 pts) \mathcal{S} is a portion of what quadric surface?
(b) (10 pts) Compute the upward flux of the electric field through the surface by evaluating $\iint_{\mathcal{S}} \mathbf{E} \cdot \mathbf{n} \mathrm{d} S$ directly.
(c) (15 pts) The surface \mathcal{S} is not closed. However, Gauss' Divergence Theorem can still be applied to find the flux of \mathbf{E} through \mathcal{S}. Apply the theorem to verify your answer to part (b).
6. [2350/121222 (30 pts)] A square metal plate occupies the region $0 \leq x \leq 20,0 \leq y \leq 20$. The temperature of the plate is given by $T(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$. In all of the parts below, be sure to use Calculus 3 concepts. No credit for reducing the problems to a single variable problem.
(a) [8 pts] An ant is crawling around on the plate, following the curve $y=1+x^{2}$. At the point $(1,2)$ in the direction of the ant's motion, how is the temperature changing with respect to
i. distance?
ii. time?
(b) [10 pts] On this path, will the ant ever experience the warmest temperature in the plate's interior? Fully justify your answer.
(c) [12 pts] Now suppose the ant is crawling along the portion of $x+y=12$ lying on the plate. Find the highest and lowest temperatures the ant experiences on this new path.
